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ABSTRACT 

Within the past 50 years, Narragansett Bay has undergone major physical and chemical 

changes including climate-induced warming and policy-driven reductions in anthropogenic 

nutrient pollution. These long-term changes have the capacity to transform the ecological 

function of Narragansett Bay, but may also represent a case study for global oceanic changes. 

Despite its importance, the long-term response of ecosystems to climatological change 

remains uncertain, as well as the consistency of biological interactions with the environment 

over time. I explore these uncertainties here using Bayesian dynamic linear models (DLMs) to 

investigate the Narragansett Bay Long-Term Plankton Time Series. In a first stage, DLMs 

were used both to interpolate missing data and describe changes in seasonality and long-term 

trend for nitrogenous nutrients, water temperature, and size structure of phytoplankton 

communities. Among complex physical and chemical changes observed, these models 

revealed a long-term decline in large phytoplankton and intensifying seasonal blooms for 

smaller phytoplankton. These changes in size structure of biological communities were 

expanded through analysis of cross correlations and a second modeling stage where the 

imputed nitrogen series was used as a predictor of phytoplankton levels in a multivariate 

dynamic linear regression model (DLR). The DLR revealed a newly discovered seasonal 

dependence of large phytoplankton on nitrogen sources. Results suggested highly dynamic 

states and the need for discount specification of covariance matrices. This motivated more 

general analysis of model selection in time series with high stochasticity and long intervals of 

missing data. Through simulated data and metrics of model fit including information criteria 

and forecasting errors, I explored model selection as well as standard and practical discounting 

methods in series with long intervals of missingness. These analyses highlight one-step-ahead 

root mean square forecast error as a relatively consistent selection tool, but also evidence the 

uncertainty in accurate recovery of discount factors in general, and potential impacts on model 

inference. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Scientific Background 

Globally, phytoplankton are responsible for primary production on the order of 

36.5-48.5 Gt C yr-1 (Antoine et al. 1996; Field et al. 1998). This biological production 

is critical for everything from biogeochemical cycling (e.g. carbon; Falkowski 1994), 

to the productivity of marine food webs (Steinberg and Landry 2017). However, with 

climate change, the ecological functions of plankton communities are at risk.  

Cell size represents one such compositional feature, that both varies broadly, 

and is strongly associated with ecosystem traits. The size of phytoplankton from the 

unicellular to colony scale covers over 9 orders of magnitude, with a range from <1 

µm to several centimeters (Beardall et al. 2009).  These size differences manifest into 

predictive allometric relationships. In general, at the cellular level, size is negatively 

related to traits including metabolic rate (López-Urrutia et al. 2011), nutrient diffusion 

and uptake rates (Mei et al. 2009), and light absorption efficiency (Marra et al. 2007), 

but also positively related to features including biomass-based growth rate under 

nutrient replete conditions, and tolerance to light variability (Mei et al. 2009; Irwin et 

al. 2006; Key et al. 2010) . At the ecosystem level, these traits manifest so that cell 

size is also inversely related to maximum abundance (Irwin et al. 2006), strength of 

the microbial loop, and food chain length (Sprules and Munawar 1986), but also 

positively related to features including sedimentation rate, and export efficiency 



 

2 

 

(Miklasz and Denny 2010). These allometric relationships thereby make cell size a 

highly informative feature for inferences from cellular to ecosystem function.  

While plankton size structure has the capacity to affect marine ecosystem 

function; biological, chemical, and physical ecosystem traits also feedback to affect 

the size structure. In the context of climate change, there is thus the potential that the 

community size structure of phytoplankton may be affected. The Intergovernmental 

Panel on Climate Change predicts that average global temperature is likely to increase 

to 1.5 °C above pre-industrial levels between 2030 and 2052, and that the current 

average rate of increase is 0.2 °C per decade with higher rates of warming towards 

polar regions (IPCC 2018). At the intraspecific level, cell size is known to scale 

inversely with temperature (Atkinson et al. 2003). Community level studies have also 

found community size distribution scaled inversely with temperature (Morán et al. 

2010; Hilligsøe et al. 2011). These findings suggest that the global increases in 

temperature may also result in phytoplankton communities with size distributions 

tending toward smaller organisms.  

Beyond temperature, the size distribution of phytoplankton communities may 

also be affected by limiting nutrients. At a global scale, stratification is expected to 

increase and thereby limit the nutrient supply to phytoplankton (Sarmiento et al. 2004; 

Behrenfeld et al. 2006). Cell size directly imposes a physical constraint on the 

potential rate of nutrient supply (Mei, Finkel, and Irwin 2009), and thereby community 

size distribution has been positively related to nutrient availability (Chisholm 1992; 

Irwin et al. 2006). In future climate scenarios, temperature and nutrient influences may 

act in concert to skew community size distributions to smaller cells.  
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These predictions give the potential that the biological function of the ocean 

may be drastically altered in future climate scenarios by shifting the size structure of 

phytoplanktonic communities. Notably, most climate predictions and observations of 

size structure have focused on open ocean environments. However, the impacts of 

climate change will not be limited to these regions. The coastal environment shows 

evidence of some of the highest rates of change. Moreover, coastal nutrient levels can 

be strongly influenced by anthropogenic inputs. While some regions are facing 

increasing eutrophication (Cloern et al. 2014), in others, government policy has been 

enacted or proposed to better regulate nutrient pollution (Saarman 2007).    

In this study Iuse Narragansett Bay (NB) RI, USA as a study system. NB is a 

temperate, coastal estuary, where several decades long monitoring efforts have 

covered long-term anthropogenic influences from climate to nutrient pollution 

(Fulweiler et al. 2015). Linear regression analyses of long-term temperature record 

from 1960 to 2012 showed mean annual water temperature has increased 1.4-1.6°C, 

with warming as high as 2.2°C in the winter (Nixon et al. 2009; Fulweiler et al. 2015). 

Superimposed on these long-term climate trends are climate oscillations, such as the 

NAO, which in the positive phase can increase water temperatures by as much as 3°C 

from the average Oviatt 2004). Beyond temperature rise, Narragansett Bay has 

undergone major decline in nutrient loadings. Most recently, between 2005 and 2012, 

the nutrient loading by wastewater facilities were reduced by 50% through tertiary 

wastewater treatment (DEM 2005). These changes have measurably reduced the 

standing stock of DIN and DIP in the bay by 50-60% (Oviatt et al. 2017). While 

nutrient changes in the Bay have been confirmed by separate, discrete field 
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observations, they have not been considered in a time-series context, and their 

potential effects on the structure of the phytoplankton community has not been 

examined. 

 

Previous Statistical Work 

To date the published literature has generally focused on descriptive statistics 

at the annual scale and deterministic models such as simple linear regression. Such 

methods have worked to describe static, long-term patterns with large, monotonic, and 

approximately linear effects. However, such summary statistics can be biased or 

information lost because the full resolution of the data or its inherent features were not 

considered. Such features include autocorrelation, missingness, seasonality, as well as 

changing rates and associations amongst variables over time. To my knowledge, there 

is no published work on the Narragansett Bay Phytoplankton Time-Series using time 

series methods which may directly address these features. I emphasize that 

statistically, this may have left a wealth of information hidden. In example of 

limitations of previous work, while linear regression of temperature series may find a 

significant fit to long-term trends over decades, it imposes a strict, static relationship 

which might otherwise be expected to change over the course of the many decades 

being analyzed. On the multidecadal scale, this means that relevant expected multiyear 

cycles are not represented (Borkman and Smayda 2009), nor are the intra-annual 

seasonal cycles relevant on the scale of the biological components which drive the 

ecosystem function of the bay (Pratt 1965; Durbin, Krawiec, and Smayda 1975; 

Karentz and Smayda 1984; Lawerence and Menden-Deuer 2012). Of key concern is 

that constant rates of change are assumed, but it is generally considered that systems 
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with feed-back mechanisms (positive or negative) or tipping points, are likely to see 

non-linear rates of change (Steffen et al. 2015).   

Models which do not consider the autocorrelated structure of time series data 

are prone to type 1 errors when the cross-correlation between series is considered. 

Such spurious correlation between series is the result of inflated cross-correlation due 

to remaining autocorrelation in the series (Yule 1926). Independent series may have 

inflated covariance when at least one of the series is not first filtered to white-noise 

(pre-whitening). This is an important process because it can otherwise lead to the 

interpretation of spurious correlation between series as meaningful associations (Katz 

1988).  

Another important feature of these time series data which has not been 

addressed are the missing data. Missingness is critical to address because it may 

represent both a loss of information and bias in results. To exemplify the potential for 

bias, consider the most common analysis method, where annual means are used. 

Because of the strong seasonal signature, if data are missing in a given season, then 

the annual metric may be biased. The loss of information also represents a major 

concern because it is the intra-annual patterns which drive the ecological dynamics of 

the bay (Pratt 1965; Durbin, Krawiec, and Smayda 1975; Karentz and Smayda 1984; 

Lawerence and Menden-Deuer 2012). It is also known specifically that size structure 

of phytoplankton have a distinct seasonal pattern (Durbin, Krawiec, and Smayda 

1975). Further, the phytoplankton community is one with high turnover, and so their 

ecology is not represented by integrated statistics over long periods in time. In 

consultation with managers of the data series, it is believed that missingness is in 
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generally not conditional on the missing value (i.e. missing not at random, MNAR). 

Instead, the data missingness is more likely to be missing completely at random 

(MCAR, not conditional on any observed or unobserved value), or missing at random 

(MAR, conditional on some observed value such as missingness at a previous time-

point).  

State space models are one class of flexible time series model with the capacity to 

address key data features including and not limited to changing associations over time, 

missingness, seasonal structure, and autocorrelation. There is limited but growing 

literature on the utility of Bayesian state space models in plankton ecology, 

demonstrating that these models may be critical in elucidating the driving relationships 

in ecology which are unlikely to be static with time (Arhonditsis et al. 2007; Jones et 

al. 2010). The general structure of these models allows easy decomposition into their 

additive components. State space models, in general, model latent states through 

Markovian dependence structure (depending only on the previous state), assuming 

measured data are observations of these states with some error (Fig. 1). This 

Markovian structure is a key trait that allows time-specific parameter estimates. The 

proceeding methodology section outlines a specific case of state-space models, the 

dynamic linear model (DLM), where Gaussian distributed errors are assumed. The 

DLM alone is flexible in structure, and the cases represented here will be a few 

specific examples relevant to this application (e.g. West and Harrison 1997, Prado and 

West 2010).  
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Figure 1. the Markovian dependence structure of state-space models, with each latent 

state at time i (𝜃𝑖) and corresponding observations of each state (𝑌𝑖).  

 

In this study, I investigate change in the size structure of phytoplankton in 

Narragansett Bay from 2003-2019 through a weekly record of size fractioned 

chlorophyll (chl. a) and associated measurements of surface water temperature, nitrate 

and nitrite (NO2
-+ NO3

-), and ammonia (NH4
+) concentration. A bivariate Bayesian 

dynamic linear regression is used to model changes in the chlorophyll concentration in 

two size groups (<20 µm), and (>20 µm) as a function of these environmental 

variables. In this thesis, I use the decompositions of these models to demonstrate the 

changes in size structure in Narragansett Bay, and test dependence on environmental 

traits.   

 

1.2 Data Description 

Surface water temperature, NO2
-+ NO3

- concentration, NH4
+ concentration, 

chlorophyll a concentration less than 20 µm, and chlorophyll a concentration greater 

than 20 µm were all obtained from the University of Rhode Island Long-Term 

Plankton Time Series of Narragansett Bay from 2003-2019 at weekly resolution from 

the publicly available dataset (https://web.uri.edu/gso/research/plankton/data/, fig. 2, 

3). When available, missing data from the temperature dataset were filled with surface 

temperature measurements from the University of Rhode Island Fish Trawl 

https://web.uri.edu/gso/research/plankton/data/
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(https://web.uri.edu/fishtrawl/data/), which are taken at the same location less than 1 

hour later. Dissolved inorganic nitrogen (DIN), a frequently limiting nutrient for 

growth in marine environments is represented here as the sum of NO2
-+ NO3

- and 

NH4
+. 

  

https://web.uri.edu/fishtrawl/data/
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Figure 2. Temperature and nutrient records from the URI Phytoplankton Time-Series. 

From top to bottom: a. surface water temperature (°C), b. log NH4
+(µg L-1), c. log 

NO3
-+NO2

- (µg L-1), d. log Chlorophyll a > 20 μm (µg L-1), e. log chlorophyll a < 20 

μm (µg L-1). 
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It is expected that the innovations of the chlorophyll and nitrogen series are 

approximately normal after log transformation, and that the associations, between 

potential predictors and responses are reasonably log-linear for temperature-

chlorophyll (Eppley 1972) and reasonably linear for the log chlorophyll, log nutrient 

associations. Therefore, the chlorophyll and nitrogen series were first log-transformed.  

 

Figure 3. Histograms, Pearson Correlation, and pairwise scatterplots among the 

primary variables of interest in the model.  
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Table 1. Missingness Lengths in the Chl. a series 

 Missingness Length Frequency 

Chl. a <20 µm 1 61 

 2 6 

 4 1 

  48 1 

Chl. a >20 µm 1 61 

 2 5 

 4 1 

 48 1 

 

 While there are 573 (67%) complete cases of all data series, the remainder are 

of various missing data patterns with 38 (4%) time points without observation of any 

of the data series. Among the chlorophyll series, the duration of missing periods 

ranges from 1 to 48 observations. Notably, the missing data at 48 consecutive 

observations represents nearly one full year of missing data (table 1, fig. 4). It is 

expected that mostly, the missing data mechanisms is missing completely at random 

(MCAR) meaning missingness is not dependent on the missing value. Therefore, 

missingness in ignorable, meaning it does not bias inference. 
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Figure 4. Missingness patterns in the data. Blue squares represent present in the 

temperature, Chl. a < 20µm, Chl. a >20µm, NO3
- +NO2

-, and NH4
+ series. Maroon 

squares represent missing data. Counts on the bottom axis are the number of total 

missing values for the variable in that column specified at the top. Counts on the left 

side are the number of times that missing data pattern occurs in the series. Counts on 

the right side are the number of missing variables in that missingness pattern. 
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CHAPTER 2 

 

METHODS 

 

2.1 Dynamic Linear Models 

The standard dynamic linear model (DLM) can be represented as two linear 

equations, the first of which (eqn. 1) represents observations (𝑦𝑡) from a true 

unobserved state (𝜽𝑡), transformed by the observation matrix (𝑭𝑡) with error (𝑣𝑡). The 

second equation (eqn. 2) models the evolution of the latent state 𝜽𝑡 through time, 

according to the evolutional matrix (𝑮𝑡) with evolutional covariance (𝑾𝑡). The DLM 

is defined at time t by the set {𝑭𝑡 , 𝑮𝑡, 𝜽𝑡 , 𝑽𝑡,𝑾𝑡} In the DLM, it is assumed that both 

evolutional and observational errors are normally distributed. This general form will 

carry through all the models shown here, with modifications to these parameters, 

dimensions, and the algorithms for their estimation. 

𝑦𝑡 = 𝑭𝑡𝜽𝑡 + 𝑣𝑡,           𝑣𝑡~𝑁(0, 𝑽)           (1) 

𝜽𝑡 = 𝑮𝑡𝜽𝑡−1 + 𝑤𝑡 ,     𝑤𝑡~𝑁(0,𝑾)         (2) 

𝜽0|𝐷0~𝑁(𝒎0, 𝑪0) 

𝑽0~𝐼𝐺(𝑎𝑣 , 𝑏𝑣  ) 

𝑾0~𝐼𝑊(𝑎𝑤 , 𝑏𝑤) 

For specifications of static 𝑽, and 𝑾, consistent with the static Bayesian inference 

for the Gaussian distribution, the inverse-gamma (IG) can serve as a semi-conjugate 

prior in the univariate case for variance, and the inverse-Wishart (IW) is semi-

conjugate in the multivariate-Gaussian case. Alternately, in cases where model 

evolution or observational error are time varying and dynamic 𝑽𝑡, and 𝑾𝑡 must be 
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specified, discount factors can be used, which model the loss of information between 

time steps, whereby low discount factor levels correspond to more information lost per 

step ahead, and higher discount factors represent greater predictability between time-

steps (eqn. 3). While an explicit state-space model could be specified, this can be 

disadvantageous in terms of both complexities, and due to non-conjugacy in inference. 

𝑾𝑡 =
1 − 𝛿𝑖

𝛿𝑖
𝑷𝑖,𝑡, (3) 

𝑷𝑖,𝑡 = 𝑮𝑡𝑪𝑡−1𝑮𝑡
′  

And when missingness exceeded length 1, that is forecast needed to be greater 

than 1, the method of ‘practical discounting’ was used as proposed by Harrison and 

West 1997 (eqn. 4). 

𝑖𝑓 𝑘 > 1, 𝑹𝑡 = 𝑮𝑘−1𝑪𝑡+1𝑮
′ 𝑘−1    (4) 

Because of the Markovian structure, solving for the posterior distribution of the 

latent states 𝑓(𝜽𝑡|𝑫𝑇 ∙), where T=1,2,…,n, is a three step process conditional on the 

unknown variance and covariance parameters. In the case of the DLM, in the Bayesian 

framework this an iterative algorithm of forecasting, filtering, and smoothing, which 

has been derived in the Kalman Filter and Kalman Smoother (Kalman 1960).   

 

One-step -ahead predictive distribution of the latent state, 𝑓(𝜽𝑡|𝑦1:𝑡−1) = 𝑁(𝒂𝑡, 𝑹𝑡), 

where: 

𝒂𝑡 = 𝐸(𝜽𝑡|𝒚1:𝑡−1) = 𝑮𝑡𝒎𝑡−1, 
𝑹𝑡 = 𝑉𝑎𝑟((𝜽𝑡|𝒚1:𝑡−1) = 𝑮𝑡𝑪𝑡−1𝑮𝑡

′ + 𝑾𝑡 

 

One-step -ahead predictive distribution of the observation, 𝑓(𝒚𝑡|𝒚1:𝑡−1) = 𝑁(𝒇𝑡, 𝑸𝑡), 

where: 

𝒇𝒕 = 𝐸(𝒚𝑡|𝒚1:𝑡−1) = 𝑭𝑡𝒂𝑡  
𝑸𝒕 = 𝑉𝑎𝑟(𝒚𝑡|𝒚1:𝑡−1) = 𝑭𝑡𝑹𝑡𝑭𝑡

′ + 𝑽𝑡 

 

The filtered distribution of the latent state, 𝑓(𝜽𝑡|𝒚1:𝑡) = 𝑁(𝒎𝑡, 𝑪𝑡), where: 
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𝒎𝑡 = 𝐸(𝜽𝑡|𝒚1:𝑡) = 𝒂𝑡 + 𝑹𝑡𝑭𝑡
′𝑸𝑡

−1𝑒𝑡, 
𝑪𝑡 = 𝑉𝑎𝑟(𝜽𝑡|𝒚1:𝑡 ) = 𝑹𝑡 − 𝑹𝑡𝑭𝑡

′𝑸𝑡
′𝑭𝑡𝑹𝑡, 

𝑒𝑡 = 𝑦𝑡 − 𝑓𝑡   
 

The smoothed distribution of the latent state,  𝑓(𝜽𝑡|𝒚1:𝑇) = 𝑁(𝑠𝑡, 𝑺𝑡), where: 

𝑠𝑡 = 𝐸(𝜽𝑡|𝒚1:𝑇) = 𝑚𝑡 + 𝑪𝑡𝑮𝑡+1
′ 𝑹𝑡+1

′ (𝑠𝑡+1 − 𝑎𝑡+1), 
𝑺𝑡 = 𝑪𝑡 − 𝑪𝑡𝑮𝑡+1

′ 𝑹𝑡+1
−1 (𝑹𝑡+1)𝑹𝑡+1

−1 𝑮𝑡+1𝑪𝑡  
 

Multivariate and matrix-variate extensions have been developed and detailed by 

Wang and West (2009).  The Kalman Filter and Smoother are used to sample the 

latent state conditional on the observed data and other model parameters in the 

forward-filter backward-sampling (FFBS) algorithm. The Kalman Filter can be 

derived both by Bayes theorem, and standard normal theory. From the Bayesian 

perspective, the derivation comes about from the one step ahead forecast which serves 

as a prior for filtering the next time interval. 

Amongst all series, it is expected that after transformation the assumption of 

Gaussian distributed errors, and linear associations are generally appropriate, thus 

conforming to the distributional and structural assumptions of the DLM case of state 

space models. Therefore, it is anticipated that the FFBS will be conserved across the 

model variations included in this proposal. Notably, both the filter and smoother are 

conditionally conjugate on other parameters such as 𝑽, and 𝑾 or within  𝑭𝑡 and 𝑮𝑡 

parameters.  

The discount factors themselves can be sampled from a discrete distribution 

conditional on 𝜽𝑡 , 𝑭𝑡, 𝑮𝑡,  with probabilities proportional to the log likelihood (e.g. 

Rodriguez and Puggioni 2010 ). This is equivalent to Bayesian model averaging where 

each sampled model has a fixed discount factor. In the DLM literature, this may also 

be referred to as a type 1 multi-process model, where the model structure is sampled 
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for all timepoints.  However, it is also common practice to fix discount factors and 

compare models under different sets of fixed factors (Ameen and Harrison 1984). The 

fixed factors are commonly chosen with mean one-step-ahead forecast error (Ameen 

and Harrison 1984, Augilar West 2000). Depending the case, either the log likelihoods 

for discrete factors in the sampling model or full models themselves may be 

parallelized, respectively, to expedite computation.  

While the usage of discrete sampling for the discount factor means only one 

model needs to be run to select discount factors, the calculation of the log likelihood 

for the discrete sampling distribution requires that filtering be calculated at all time-

points for each discrete discount factor value. As mentioned, this can be done in 

parallel, but so too can several independent models with fixed discount factors. 

Sampling discount factors also adds the additional complexity for additional issues in 

MCMC sampling, and potentially contribute to highly autocorrelated samples and thus 

low effective sample sizes from the posterior distributions that can come with highly 

parameterized models (Gelman et al. 2014). Both discount factors and covariance 

matrices may be specified uniquely for independent blocks or components of the 

model (West and Harrison 1997). 
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2.2 Model Structures 

 

Figure 5. Analysis workflow for the Narragansett Bay Time Series analysis. First 

stage models are intended for imputation of missing data, exploration, and to 

characterize both seasonal change and long-term trends in the series. The second stage 

model is specifically designed to test how DIN, which was legally regulated for 

wastewater treatment facilities, may be tied to the phytoplankton size structure of 

Narragansett Bay.  

 

In this project, the analysis of the NB data is structured in stages to investigate the 

potential associations and changing associations between chlorophyll size fractions 

and DIN and temperature (fig. 5). With this objective, a two-stage model is proposed. 

The first stage is a bivariate DLM for NH4
+ and NO3

-+NO2
-, and independent 
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univariate DLMs for temperature, chl. a < 20 µm, and chl. a >20 µm. This stage has a 

scientific purpose to provide a descriptive measure of long-term and potentially 

seasonal change in each of these environmental features and explore associations of 

complete data series. As described above, this alone is novel for the NB time series. 

Statistically this first model stage also serves for data imputation, which is necessary 

for the second regression stage of the model which requires a complete series of the 

regressors, which have missingness (fig. 2, 4). The second component of the total 

model, is a dynamic linear regression of chlorophyll on DIN (NH4 + (NO3+NO2)). 

This formulation is designed to test the hypothesized associations between the series 

and describe data patterns. The second component must sample from the posterior 

distributions of the smoothed latent states (i.e. 𝑓(𝑭𝑡𝜽𝑡|𝒚1:𝑇)) of the first stage models. 

Because the posterior latent state is designed to represent the true level of the 

regressors without observational error, it was decided that this would represent a more 

accurate predictor for the chl. a series. The specification of these two models is as 

described below.  

 

Stage 1 models 

In stage 1, four total models were run, univariate models for temperature, log 

chl. a <20µm, log chl. a >20µm, and another bivariate for log DIN. Both these models 

have two major components to the latent state θt. The first is a dynamic intercept (𝜇𝑡) 

with corresponding components in 𝑭𝑡 and 𝑮𝑡 of 1 (eqns. 5, 6). Thereby, 

𝑓(𝜇𝑡|𝜇𝑡−1,𝑾𝜇)~𝑁(𝜇𝑡−1,𝑾𝜇), and so (𝜇𝑡) has the flexible structure of a random walk 

process.  
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In all cases where seasonal components are included, they are represented by 

harmonics in Fourier form, for a parsimonious representation of annual cyclicity 

(eqns. 6,7). At weekly resolution, the data has long periodicity (52.17, the number of 

weeks in a year). While any function of period s can be modeled by s/2 harmonics, in 

general a smaller number is both more practical and effective. Depending on the 

complexity of the seasonal signal, j different harmonics are used beginning with that 

of the longest possible period, s. For the temperature series, j=1, for the DIN and chl. a 

series, j=(1,…,5) to accommodate a more complex seasonal cycle. Within 𝜽𝑡, for each 

frequency, both the harmonic 𝑆𝑗,𝑡 and its conjugate 𝑆𝑗,𝑡* are included (eqn. 8), and 

evolve according to the subcomponent 𝐻 of the evolutional matrix 𝐺 (eqn. 6).  

𝐹 = [11010 …01]                                                                   (5) 

𝐺 = [
1

𝐺𝑆
] , 𝐺𝑆 = [

𝐻𝑗

⋱
𝐻𝑠

2

]                           (6) 

𝐻𝑗 = [
𝑐𝑜𝑠(𝜔𝑗) 𝑠𝑖𝑛(𝜔𝑗)

− 𝑠𝑖𝑛(𝜔𝑗) 𝑐𝑜𝑠(𝜔𝑗)
] , 𝜔𝑗 =

2𝜋𝑗

𝑠
                    (7) 

𝜃𝑡,𝑋 =

[
 
 
 
 
 
 

𝜇
𝑆1 , 𝑡

𝑆1 , 𝑡
∗

⋮
𝑆𝑠

2
,𝑡

𝑆𝑠
2
, 𝑡

∗

]
 
 
 
 
 
 

                                                                             (8) 

            

For temperature, 𝜽𝑡,𝑥 was composed of 𝜇𝑡 and one dynamic season component 

with period 𝑠 to describe the seasonal cyclicity and its interannual changes. 

Considering consistent observational uncertainty, error 𝑽 was modeled as time 
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invariant and given a conjugate prior with low informativity, IG(0.1, 0.1). Under the 

expectation that temperature patterns should be slow to evolve in time and that long-

term and seasonal patterns should not obviously be related, a time invariant 

evolutional covariance matrix 𝑾 was specified as diagonal, with each diagonal 

variance element given a conjugate inverse-gamma prior with low informativity 

IG(0.1, 0.1). Because 𝜽𝑡,𝑥, 𝑽, and 𝑾 are conditionally conjugate, Gibbs sampling from 

the FFBS, IG distribution of 𝐕, and IG distributions of the diagonal elements in 𝑾 lead 

to a sample of the full joint posterior.  

For DIN, which is equal to the sum of the series of NH4
+ and NO3

-+NO2
-, a 

bivariate model was specified so that each of its components is modeled with 

correlations permitted between series components. This bivariate structure allows the 

correlation between series to be leveraged in the FFBS, so that if one series is missing 

data where the other is not, the correlation between the series provides additional 

information. Both the data series are first log-transformed. 𝜽𝑡,𝑥 is composed of a 𝜇𝑡 

component for each series and multiple dynamic season components for each series 

with periods 𝑠,
𝑠−1

2
, … to describe the seasonal cyclicity and its interannual changes. 

Considering consistent observational uncertainty, error 𝑽 was modeled as time 

invariant and given a prior with low informativity, IW(0.1, 0.1*𝑰𝑝), where 𝑰𝑝 is the 

identify matrix with rank p. Because 𝜽𝑡,𝑽, and components are conditionally 

conjugate, Gibbs sampling from the FFBS, IG distribution of 𝑽, and IW distribution of 

W leads to a sample of the full joint posterior.  
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Table 2. Models run in stage 1 and stage 2 of this thesis, with general specifications. 

 

 

 

Considering this thesis has specific hypotheses about temperature and nitrogen 

changes, the cross-correlation of the pre-whitened series was calculated to evaluate the 

magnitude, significance, and potentially meaningful cross-correlations, after 

accounting for the temporal structure of the data. In pre-whitening, an ARIMA 

(autoregressive integrated moving average) class is fit to one series so that only 

unstructured residuals are left. The same model is used the filter the second series. 

This is designed to reduce spurious correlations between the series in the CCF. Also, 

as an exploratory measure, before modeling the dependence structure in the second 

stage of the model, a wavelet analysis was performed on the univariate series to 

investigate patterns of cyclicity. Further, cohesion calculated between the series to 

visualize potential changes in seasonal structure, lagged relationships across 

timescales (phase differences through phase angle) and coherence between the series, 

coherence being analogous to cross correlation as a function of frequency. Wavelet 

analysis was performed using the waveletcomp package in R, which uses the Mortlet 

wavelet transform of the time series (Roesch and Schmidbauer 2018, eqn. 9).  
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𝜓(𝑡) = 𝜋−
1
4𝑒6𝑖𝑡𝑒−

𝑡2

2                                           (9) 

𝑊𝑎𝑣𝑒(𝜏, 𝑠) = Σ𝑡𝑥𝑡

1

√𝑠
𝜓∗

𝑡 − 𝜏

𝑠
 

𝑊𝑎𝑣𝑒𝑥,𝑦 =
1

𝑠
𝑊𝑎𝑣𝑒𝑥(𝜏, 𝑠) ∗ 𝑊𝑎𝑣𝑒𝑦

∗(𝜏, 𝑠) 

𝑃𝑜𝑤𝑒𝑟(𝑡, 𝑠) =
1

𝑠
|𝑊𝑎𝑣𝑒(𝜏, 𝑠)|2 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝑊𝑎𝑣𝑒𝑥,𝑦|

2

𝑃𝑜𝑤𝑒𝑟𝑥 ∗ 𝑃𝑜𝑤𝑒𝑟𝑦
 

 

Stage 2 Models 

 

After fitting potential predictive series, exploring their structure and evaluating 

cross-correlative features between series, I examined the association between DIN and 

the chlorophyll series in a multivariate observational model (eqn. 10) with a matrix-

variate state (eqn. 11). The advantage of allowing a matrix-variate state is in the ability 

to model correlated evolution among the series as well as the state variables.  

𝒀𝑡 = 𝑭𝑡𝜽𝑡 + 𝑣𝑡,           𝑣𝑡~𝑁(0, 𝑽)           (10) 

𝜽𝑡 = 𝑮𝑡𝜽𝑡−1 + 𝑤𝑡,     𝑤𝑡~𝑁(0,𝑾𝑡⨂𝑽) (11) 

𝜽0|𝐷0~𝑁(𝒎0, 𝑪0) 

𝑽0~𝐼𝑊(𝑎𝑣 , 𝑏𝑣 ) 

𝑾𝑡 =
1 − 𝛿𝑖

𝛿𝑖
𝑷𝑖,𝑡, 

𝑷𝑖,𝑡 = 𝑮𝑡𝑪𝑡−1𝑮𝑡
′  
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Both series have three major components to the latent state θt. The first is a 

dynamic intercept (𝜇𝑡) with corresponding components in 𝑭𝑡 and 𝑮𝑡 of 1 (eqns. 12, 

13). Thereby, 𝑓(𝜇𝑡|𝜇𝑡−1,𝑊𝜇)~𝑁(𝜇𝑡−1,𝑊𝜇), and so (𝜇𝑡) has the flexible structure of a 

random walk process. The second component is a regression coefficient (𝛽𝑡) on the 

appropriate lag k of the predictor, in this case, lag 0 of DIN. The corresponding 

multiplier in 𝑭𝑡 is the predictor 𝑋𝑡−𝑘, and the corresponding component in 𝑮𝑡 is 1. 

Thereby, 𝛽𝑡 can also evolve with the flexibility of a random walk process. The final 

component of the model is a Fourier form seasonal component, with j=1 (eqns. 13, 

14). While the predictor is seasonal, and the dynamic intercept has the capacity to 

adapt to seasonal variability, including a static season component helps ensure that the 

dynamic intercept adapts to what is truly the long-term pattern and not necessarily 

residual seasonal patterns. By this structure, the interpretation of the regressive 

component, is not in describing the total variability attributable to the regressor, but 

rather, the anomaly from the long-term trend and regular seasonality.   

𝑭𝑡  = [1, 𝑋𝑡−𝑘, 1,0]                                                                                                    (12) 

𝑮 = [
1

1
𝑮𝑠

] , 𝑮𝑆 = 𝑯𝑗                                                                           (13)  

𝑯𝒋 = [
𝑐𝑜𝑠(𝜔𝑗) 𝑠𝑖𝑛(𝜔𝑗)

− 𝑠𝑖𝑛(𝜔𝑗) 𝑐𝑜𝑠(𝜔𝑗)
] , 𝜔𝑗 =

2𝜋𝑗

𝑠
                                                     (14) 

𝜽𝑡,𝑋 =  

[
 
 
 
𝜇𝑡,1 𝜇𝑡,2

𝛽𝑡,2 𝛽𝑡,2

𝑆1,𝑡,1 𝑆1,𝑡,2

𝑆1, 𝑡,1
∗ 𝑆1, 𝑡,2

∗
]
 
 
 
                                                                                             (15) 
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Notably, there are other specifications of possible to study the influence of the 

regressor besides on the overall mean levels. For example, apart from the mean levels 

of the series, the seasonal impacts could be investigated directly by multiplying the 

regressor by a seasonal component. The impact of the regressor could also be studied 

on the covariance matrices, by specifying another level of the model (in itself a state-

space model) for the covariance. While there would be no conjugate or semi-conjugate 

model for the posteriors of a model for covariance, alternative inferential algorithms 

like particle filtering make this possible.  

The observational covariance 𝑽 is conditionally conjugate and static, with an 

IW(10, 10 ∗ 𝜎𝑌1,𝑌2
) prior.  

For 𝑾, both static and dynamic specifications were tested. For the static case, 

a conditionally conjugate IW(p, Ip) prior was utilized. For the case of discount factors, 

for 𝑾, discrete discount factors (0.8, 0.85, 0.9, 0.95, 0.99, 0.999) were tested in 

parallel model runs.  Because 𝜽𝑡,𝑥, 𝑽, and 𝑾 are conditionally conjugate, Gibbs 

sampling from the BS, posterior conditional IW distribution of 𝑽, and posterior 

conditional IW distributions of 𝑾 led to a sample of the full joint posterior.  

2.3 Posterior Computational Methods 

 Posterior samples of unknown variance, covariance, and latent states were all 

iteratively sampled via Markov Chain Monte Carlo simulations. As many models were 

being run, the default simulation length was 5,000 iterations with a burn-in period of 

2,000. As necessary, for models with high autocorrelation in the MCMC chain, the 

effective number of simulation draws was calculated as in Gelman et al. (2014), where 

𝑊 = 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝜎2, and 𝐵 = 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝜎2 (eqn. 15).  
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�̂�𝑒𝑓𝑓 =
𝑚𝑛

1 + 2Σ𝑡=1
T   �̂�𝑡

, (15) 

�̂�𝑡 = 1 −
𝑉𝑡

2 𝑣𝑎�̂�+
, 

𝑉𝑡 =
1

𝑚(𝑛 − 𝑡)
Σ𝑗=1

𝑚 Σ𝑖=𝑡+1
𝑛 (𝜓𝑖,𝑗, −𝜓𝑖−𝑡,𝑗)

2
, 

𝑣𝑎�̂�+(𝜓|𝑦) =
𝑛 − 1

𝑛
𝑊 +

1

𝑛
𝐵, 

The minimum effective number of samples was 1000. At a maximum this 

required 10,000 MCMC iterations, which was within capacity of computer memory so 

thinning was not required. After examining trace, density, and acf plots of posterior 

samples, as necessary, simulations were split into 5 chains of equal length to calculate 

effective sample size. 

Considering temperature and nitrogen are expected to be inversely and 

positively correlated with cell size respectively, I analyzed the cross-correlation of the 

pre-whitened series to evaluate the magnitude, significance, and potentially 

meaningful cross-correlations, after accounting for the temporal structure of the data. 

Also, as an exploratory measure, before modeling the dependence structure in the 

second stage of the model, a wavelet cohesion analysis was performed in a pairwise 

manner between the series to visualize potential changes in seasonal structure and 

coherence between the series.  

For the optimal models at each stage, analysis code are publicly available on 

Github (https://github.com/JacobPStrock/NBPTS_DynamicLinearModels) 

https://github.com/JacobPStrock/NBPTS_DynamicLinearModels
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CHAPTER 3 

 

DATA SIMULATION AND MODEL SELECTION FOR 𝛿 

3.1 Model Selection with Fixed Discount Factors 

In the environmental series included in this study, there are several features 

which make inference challenging. These features touch remaining uncertainties in 

model specification and selection for DLMs, despite the abundant usage and long-

standing prevalence of these models (Kalman 1960; West and Harrison 1997). One 

such feature in the case of the series of this study is missingness periods of extended 

length (<48 consecutive observations). It is in these cases with extensive missingness, 

where it stands to question what is the appropriate discounting method, and which 

criteria accurately select the discount factor in these cases.   

Usage of discount factors has primarily focused on one-step ahead forecasting 

𝑓(𝜃𝑡|𝒚1:𝑡−1), which is—as aforementioned—critical for calculating the posterior 

distribution of the state at a given time-point, imputation for missing time-points, and 

forecasting to future time-points (Harrison 1967). Practically, there is no standard for 

choice of discount factors for fixed discount models, which can be necessary due to 

mixing rates in adaption-rejection sampling algorithms for discrete distributions of 

discount factors. Typically, a small number of discount factors (>5) is supplied due to 

computational costs, and one-step ahead forecasts may be evaluated (Ameen and 

Harrison 1984; Aguilar and West 2000). To my knowledge, most of the foundational 

work in discount factors has been exemplified with complete or mostly complete 

series, and in cases where high resolution, or predictability of the data itself meant that 
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some high (>0.95) discount factor could be applied with constrained effects on the 

final model fit. Despite the relatively popular usage of discount factor models, to my 

knowledge, selection of discount factors in less predictable series (corresponding to 

low discount factors), and those with potentially long durations of missingness has not 

been evaluated. The uncertainty of model selection in these series may be a 

particularly important issue because uncertainty in the selection of potentially lower 

discount factors (<0.9) could have major effects on model fit and interpretation. This 

issue is compounded in the missing data periods, where, by strict definition of the 

discounting methods, the uncertainty in the model increases exponentially, until the 

next observation is made (eqn. 16).  Especially if a low discount factor is needed to 

model the data, this results in unrealistically large credible intervals during missing 

data periods. Consider the explicit, 𝑘-steps ahead updating of 𝑾𝑡 below (eqn. 16). 

𝑹𝑡(𝑘) =
𝑮𝑘𝑪𝑡𝑮

′𝑘

𝛿𝑘
    (16)  

 It has been suggested that in missing data periods greater than length 1, 

discounting should be halted so that in forecasting through longer missing data 

periods, the uncertainty should only grow linearly as in equation 17 below (West and 

Harrison 1998).  

𝑖𝑓 𝑘 > 1, 𝑹𝑡 = 𝑮𝑘−1𝑪𝑡+1𝑮
′ 𝑘−1               (17) 

This method termed ‘practical discounting’ indeed seems more realistic than 

standard discounting for periods of greater missingness, but to my knowledge, model 

selection, and accuracy of discount factor selection have not been formally evaluated 

for this case. In this chapter, I examine standard and practical discounting in instances 
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in simulated series with large, artificial data gaps and consider multiple metrics for 

accurate recovery of discount factors.  

 

3.2 Data Generation and Comparisons 

To evaluate the accuracy of discount factor selection, particularly in noisy data 

with prolonged data gaps presented here, data was simulated from the posterior of 

model fits to real data with fixed discount factors. Specifically, the bivariate regression 

model of the small and large size fraction of chlorophyll series, with a single fixed 

seasonal component, static 𝑽, and component discount specified 𝑾𝑡 was used. The 

posterior mean of the seasonal component, 𝑽, and 𝑾𝑡 were used to generate new 

bivariate data series from models with a lower (0.95, 0.99), and higher (0.999, 0.99) 

discount factor set. 

Data were generated by initializing the state at 0 and sequentially sampling the 

state equation (eqn. 18), so that in this simulation case, the true state was observed. 

Because these simulated data were based on model fits of the real data, the length of 

the simulated series was equal to the length of the original series. Missingness was 

also generated randomly in the new series, following the frequency of missing data 

patterns in the original data (table 1). That is the location of missingness did not mirror 

the original data, but the new data contained the same number of missing observations 

and with the same frequency of data gaps.  

𝜽𝑡 = 𝑮𝑡𝜽𝑡−1 + 𝜖𝑡, 𝜖𝑡~𝑁(0, 𝑽 ⊗ 𝑾𝑡)                 (18)  

In order to test the recovery of the discount factors, the simulated data were fit 

with three variants of the data generation model. The first case was with standard 
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discounting formulation and no missing data. The second case was with standard 

discounting formulation, including in missing data gaps. The third case was with 

‘practical discounting’ formulation, whereby with data gaps greater than length 1, the 

discount was not repeatedly replied at each timestep as in (eqn. 17). Rather, 𝑹𝑡 was 

updated as in (eqn. 18, Harrison and West 1998), so that uncertainty increased linearly 

in the data gaps. 

3.3 Model Selection and Criteria 

To inform model selection, several existing indices were first considered: 

deviance information criterion (DIC, eqn. 19), Watanabe-Aikake Information 

Criterion (WAIC, eqn. 20), and root mean square forecast error (RMSFE). DIC is 

importantly based on the deviance, or the log predictive density of the data given the 

mean point estimate of the model (Spiegelhalter et al. 2002). Because of the missing 

data in these data a variant of DIC, DIC4 (Celeux et al. 2006) is used which takes 

expectations over the missing data, in this case, our regressor Xt. Ymissing does not 

impact likelihood calculations because Yobserved  is conditionally independent of Ymissing 

given 𝜃𝑡 . As compared to DIC, WAIC uses pointwise estimates of log predictive 

density, expectation is found, and integrated over the posterior predictive density 

(Watanabe 2010). For WAIC as well, we take expectations over the missing data Xt. 

𝐷𝐼𝐶 = −𝐸𝑋[log(𝑝(𝑦|𝐸𝜃[𝜃|𝑦, 𝑋], 𝑋)𝑝(𝑋))] + 2𝑝𝐷𝐼𝐶                     (19) 

𝑝𝐷𝐼𝐶 = −2𝐸𝑋,𝜃[log(𝑝(𝑦|𝜃, 𝑋)𝑝(𝑋))]+𝐸𝑋[log(𝑝(𝑦|𝐸𝜃[𝜃|𝑦, 𝑋], 𝑋)𝑝(𝑋))] 

𝑊𝐴𝐼𝐶 = −2(𝑙𝑙𝑝𝑑 − 𝑝𝑊𝐴𝐼𝐶)                                                               (20) 

𝑙𝑙𝑝𝑑 = 2Σ𝑖=1
𝑛 𝐸𝑋,𝜃[log(𝑝(𝑦𝑖|𝜽, 𝑋)𝑝(𝑋))] 

𝑝𝑊𝐴𝐼𝐶 = 2Σ𝑖=1
𝑛 log(𝐸𝑋,𝜃[𝑝(𝑦𝑖|𝜽, 𝑋)𝑝(𝑋)]) − 𝐸𝑋,𝜃[log(𝑝(𝑦𝑖|𝜽, 𝑋)𝑝(𝑋))] 
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RMSFE was calculated for each MCMC iteration from the one step ahead 

mean forecast (eqn. 21). 

𝑅𝑀𝑆𝐹𝐸 = √Σ𝑡=1
𝑛 (𝑦𝑡 − 𝑭𝑡−1𝜽𝑡−1,𝑖)

2

𝑛

2

    (21) 

An alternative RMSFE was calculated for each timepoint, using all MCMC 

samples (eqn. 22), where r is the number of MCMC samples. 

𝑅𝑀𝑆𝐹𝐸𝑡,2 = √Σ𝑖=1
𝑟 (𝑦𝑡 − 𝑭𝑡−1𝜽𝑡−1,𝑖)

2

𝑟

2

    (22) 

In the artificially induced missing data periods, the root mean square error 

(RMSE, eqn. 23) was calculated, integrating over the full posterior distribution, as 

compared to the RMFSE, which in addition to using the one step ahead forecast, used 

the posterior mean of this forecast. 

𝑅𝑀𝑆𝐸 = √Σ𝑡=1
𝑛 (𝑦𝑡 − 𝑭𝑡−1𝜽𝑡−1,𝑖)

2

𝑛

2

    (23) 

An alternative RMSE was calculated for each timepoint, using all MCMC 

samples (eqn. 24). 

𝑅𝑀𝑆𝐸𝑡,2 = √Σ𝑖=1
r (𝑦𝑡 − 𝑭𝑡−1𝜽𝑡−1,𝑖)

2

𝑟

2

    (24) 

 

3.3 Simulation Comparisons 

𝛅𝛍 = 0.999, 𝛅𝛃 =0.99 data generation model 

 For the data series, where the data generation model used discount factors 

𝛿𝜇 = 0.999, 𝛿𝛽 =0.99 and standard discounting, the exact discount factor set was not 
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recovered in any case of although the estimates were close. DIC and WAIC both 

suggested a model of 𝛿𝜇 = 0.99, 𝛿𝛽 =0.999; RMSFE suggested 𝛿𝜇 = 0.99, 𝛿𝛽 =0.99; 

RMSFE2 suggested 𝛿𝜇 = 0.99, 𝛿𝛽 =0.999; RMSE suggested 𝛿𝜇 = 0.999, 𝛿𝛽 =0.999; 

RMSE2 suggested 𝛿𝜇 = 0.999, 𝛿𝛽 =0.999 (appx. tables 1-5). Notably, RMSFE and 

RMSE had higher power than RMSFE2 and RMSE2 respectively (appx. tables 1-5, 

appx. fig. 1), still many models did not produce significantly different RMSFE or 

RMSE. Further, the RMSE measures in this case with missingness and without the use 

of practical discounting tended to select more static models as opposed to true model 

and that selected by the DIC, WAIC, and RMSFE measures. 

 For the data series, where the data generation model used discount factors 

𝛿𝜇 = 0.999, 𝛿𝛽 =0.99 and practical discounting, the exact discount factor set was not 

recovered in any case of although the estimates were close. DIC and WAIC both 

suggested a model of 𝛿𝜇 = 0.99, 𝛿𝛽 =0.999; RMSFE suggested 𝛿𝜇 = 0.99, 𝛿𝛽 =0.99; 

RMSFE2 suggested 𝛿𝜇 = 0.99, 𝛿𝛽 =0.99; RMSE suggested 𝛿𝜇 = 0.99, 𝛿𝛽 =0.999; 

RMSE2 suggested 𝛿𝜇 = 0.99, 𝛿𝛽 =0.999 (appx. tables 6-10). Notably, RMSFE and 

RMSE had higher power than RMSFE2 and RMSE2 respectively (appx. tables 6-10), 

still many models did not produce significantly different RMSFE or RMSE. Further, 

the RMSE measures in this case with missingness and with the use of practical 

discounting tended to select more static models as opposed to true model and that 

selected by the DIC, WAIC, and RMSFE measures. 
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𝛅𝛍 = 0.95, 𝛅𝛃 =0.99 data generation model 

For the data series, where the data generation model used discount factors 

𝛿𝜇 = 0.95, 𝛿𝛽 =0.99, and standard discounting during missingness, the exact discount 

factor set was optimal for some indices. DIC and WAIC both suggested a model of 

𝛿𝜇 = 0.99, 𝛿𝛽 =0.999; RMSFE suggested 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99; RMSFE2 suggested 

𝛿𝜇 = 0.95, 𝛿𝛽 =0.99; RMSE suggested 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99; RMSE2 suggested 𝛿𝜇 =

 0.99, 𝛿𝛽 =0.999 (appx. tables 11-15). Notably, consistent with the other simulated 

series, RMSFE and RMSE had higher power than RMSFE2 and RMSE2 respectively 

(appx. tables 12-15), still many models did not produce significantly different RMSFE 

or RMSE. Further, the RMSE2, DIC, and WAIC measures in this case with 

missingness and without the use of practical discounting tended to select more static 

models as opposed to true model and that selected by the RMSFE measures. 

In the same simulated series with practical discounting during missingness, the 

exact discount factor set was optimal for some indices in the single simulation, and 

other indices such as DIC and RMSE more strongly favored models closer to the data 

generation model as compared to the method without practical discounting. DIC and 

WAIC both suggested a model of 𝛿𝜇 = 0.95, 𝛿𝛽 =0.999; RMSFE suggested 𝛿𝜇 =

 0.95, 𝛿𝛽 =0.99; RMSFE2 suggested 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99; RMSE suggested 𝛿𝜇 =

 0.95, 𝛿𝛽 =0.99; RMSE2 suggested 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99 (appx. tables 16-20, appx. fig. 

6). RMSFE and RMSE had higher power than RMSFE2 and RMSE2 respectively 

(appx. tables 16-20, appx. fig. 6), still many models did not produce significantly 

different RMSFE or RMSE. The RMSE suggest that practical discounting will 
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optimize performance in long-periods of missingness. DIC and WAIC also supports 

that practical discounting improves the model fit within sample. 

Last considering that DIC and WAIC did not exactly pick the correct model 

with missingness, in either case of practical discounting or non-practical discounting, 

to test the possible usage of DIC and WAIC in complete or nearly complete series, the 

model was fit with the complete data series (table 21). In this case, the DIC and WAIC 

did not pick the exact data generation model, however, similar to the practical 

discounting model, the selection was for a model near the data generation model.  

 

Figure 6. Posterior distributions for a. RMSFE b. RMSFE2 c. RMSE d. RMSE2 for 

each model with fixed discount factors for 𝜇 and 𝛽 (fill color), fit to simulated data 

with missingness where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. 
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In terms of model selection RMSFE is the most accurate and highest power 

metric to use for model comparison (fig. 6). DIC and WAIC did not match the data 

generation model in any circumstance. RMSFE2 and RMSE2 both had lower power 

than RMSFE and RMSE respectively. This suggests that variability in MCMC 

iterations were more clearly pronounced than variability at given timepoints.  RMSE 

tended to penalize the high uncertainty produced during discounting with large periods 

of missingness. This was apparent in all simulations. The RMSFE was optimal for the 

data generation model in the low discount factor data generation case, and selected 

slightly lower discount factors (0.99, 0.99) as compared to the data generation model 

in the case of the high discount factor generated data.  

 Concerning practical discounting and model selection, practical discounting 

did not impact the model selection according to RMSFE. However, RMSE, which is 

calculated during periods of long-missingness, identified the data generation model 

when practical discounting was used, but not when standard discounting methods were 

used. Together, this suggests that RMSFE in itself may be an optimal index for model 

selection. Further, this suggests that practical discounting will produce the optimal 

inferences when missingness is greater in length than 1 missing observation.  

3.3 Discussion 

 Considering WAIC, DIC, and two variants each of RMSE and RMSFE, 

RSMFE was the most consistent estimator in recovering the discount factors of 

simulated data. While RMSE during imputed missing data periods might be a good 

gauge for forecast or imputation accuracy, particularly with standard discounting 
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methods, it tended toward more static models than the actual data. WAIC and DIC 

also tended toward more static models than the original simulated data also 

particularly during standard discounting. RMSFE tended to be closest to the data 

generation model in cases without missing data as well as those with missing data and 

practical or standard discounting. Considering the relative consistency of RMSFE, it 

was ultimately the chosen criterion for model selection in our multivariate dynamic 

regression. Notably, longer series of simulated data may have aided distinguishing the 

exact discount factor set of the data generation model. Further, simulating more series 

could allow calculation of how often RMSFE and other criterion select the correct 

model, however, both circumstances add significant computation time and cost, and 

the single simulation provides evidence in our case, that RMSFE will choose close to 

the ‘true’ values. It is also important to note, in part that discount factors are a 

synthetic latent variable, and potentially different levels along with different 

observational covariance matrices could produce similar performing models.  

Although RMSE was a biased metric for model selection, particularly during 

prolonged periods of missingness, it still had utility in evaluating the performance of 

practical discounting in data with long period missingness. This is important because 

although the method of practical discounting has been proposed (West and Harrison 

1997), its performance during missing data imputation has not been evaluated in 

published literature. While RMSFE may be the optimal method for discount factor 

selection, it does not account for performance during long-period missingness as our 

metric of RMSE does. Therefore, results of RMSE in comparable models with 

practical and standard discounting provide an evaluation for this imputation method. 
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This is important, not only to understand the results of this study and to interpret 

forecasts during missing periods but also because for time series data with 

missingness, DLMs are a popular method for imputation and within DLMs, discount 

factors are a popular method for specifying evolutional covariance. Therefore, it is 

important to understand for series with long periods of missingness if practical 

discounting will provide optimal imputation representative of the data generation 

model. RMSE in cases of practical discounting showed that the set of discount factors 

coincident with the data generation model was optimal. This contrasts with the 

standard discounting method, for which the RMSE suggested a higher discount model. 

This is because in data with missingness length greater than one, under standard 

discounting uncertainty increases exponentially, a trait which to the reason of West 

and Harrison is unreasonable. Instead, the linear increase in uncertainty propagated 

with practical discounting results in a more accurate imputation. Notably, while we 

used these two discounting functions, theoretically, other discounting functions are 

possible, with the potential to impact both model selection and missing data 

imputation. 
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CHAPTER 4 

 

NARRAGANSETT BAY SERIES RESULTS 

4.1 Stage 1 models 

Temperature 

While marine temperature rise has been recorded and published about 

Narragansett Bay, at a rate of 0.3°C decade-1 (Fulweiler et al. 2015),the DLM fit of the 

temperature data 2003-2019 shows non-monotonic changes at multi-year scale (fig. 7). 

The 95% CI for the intercept is 10.70 to 14.02 °C, which has a range 3.32°C, 

exceeding the total documented change in Narragansett Bay. Therefore, while there 

was a prior expectation that the 17 years used in this study might demonstrate a slight 

mean temperature increase of 0.5°C coincident with the linear patterns which have 

been described, this was not found. Instead, it was revealed that multiyear patterns 

could drive changes in temperature dependent biogeochemistry.  

In addition to long-term but non-monotonic changes in the trend, the seasonal 

signal shows interannual variation, with minimum winter temperatures of the posterior 

mean predicted (0.68C+1.6), more variable than summer maxima (24.15+C1.12, fig. 

7). The ratio of the variances (2.03) is F-distributed with a p-value of 0.077, 

suggesting significance at the 𝛼=0.10 level. Though this is a highly predictable series 

in relation to other environmental data such as the other data series included in this 

study, there is an observational variance of (0.69+0.07), which has potential 

contributions from weather, tidal signal, and riverine input (appx. fig. 2).  
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Overall, the wavelet analysis supports the interpretation of dominant seasonal 

cyclicity, with some multiyear variability and finer scale variation (appx. fig. 3).  

 

Figure 7. Decomposition of the temperature series DLM (2003-2019), fit with a 

dynamic intercept and seasonal component with a yearly (period = 52.17 week) 

seasonal frequency. a. the dynamic intercept, b. the seasonal trend, c. the posterior 

predicted mean (blue) with the true data (red).  For the dynamic intercept and the 

season, the median (black), 80% (dark grey shading), and 95% (light grey shading) are 

shown. 
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NH4 & NO3+NO2 

Much like the temperature series, for NH4 and NO3+NO2 although long term 

monotonic changes were expected in the dynamic intercept, the actual patterns from 

2003-2019 were more complex, with multiyear patterns at odds with the policy 

mandates for reduction in wastewater levels by 50% between 2005-2012 (fig. 8,9). 

Further, while the seasonal cycle is quite variable year to year, there are now clear 

trends in the features of this annual cycle such as levels at the annual maxima (fig. 8, 

9). Both series of N species show a high correlation of (0.50+0.037), with overall 

higher variability in the NO3+ NO2 (0.94+0.07), as compared to NH4 (0.74+0.05, 

appx. fig. 4).  
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Figure 8. Decomposition of the NH4 series DLM (2003-2019), fit with a dynamic 

intercept and 5 seasonal components with periods of (52.17,…,48.17 weeks). Original 

data were fit on the log scale. Posterior states were back-transformed by 

exponentiation. a. the dynamic intercept, b. the seasonal trend, c. the posterior 

predicted mean (blue) with the true data (red).  For the dynamic intercept and the 

season, the median (black), 80% (dark grey shading), and 95% (light grey shading) are 

shown. 
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Figure 9. Decomposition of the NO3+NO2  series DLM (2003-2019), fit with a 

dynamic intercept and 5 seasonal components with periods of (52.17,…,48.17 weeks). 

Original data were fit on the log scale. Posterior states were back-transformed by 

exponentiation. a. the dynamic intercept, b. the seasonal trend, c. the posterior 

predicted mean (blue) with the true data (red).  For the dynamic intercept and the 

season, the median (black), 80% (dark grey shading), and 95% (light grey shading) are 

shown. 
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 Because of the high correlation of the series and similar patterns, series were 

combined into a single DIN series. Still, the temporal relationship between the two N 

series was explored with the CCF and wavelet coherence. In calculating the CCF, 

‘pre-whitening’ was used, that is fitting a model to one variable to reduce it to white 

noise and using the same model to filter the second series. After pre-whitening, the 

CCF was calculated, showing NO3+NO2 is significantly correlated as per the CCFcritical 

(1.96/√𝑛) with NH4 at lags 1:6, with highest correlation (0.42) at lag 0 (fig. 10). 

While the wavelet coherence requires smoothing, potentially masking dynamics on 

finer scales, significant coherence is shown between the series on the scale from 

several weeks to several years. The angle of coherence for spectral frequencies up to 

and around 1 year also show that NO3+NO2 dynamics lead NH4 (appx. fig. 5). The 

wavelet analysis of individual series shows relatively consistently high power around 

the annual cycle at period 52 weeks, and in a biannual cycle around period 25 weeks 

for both series (appx. fig. 6, 7). 
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Figure 10. Cross correlation between NH4 and NO3+NO2 after prewhittening. At the 

95% confidence level, according to CCFcritical (
1.96

√𝑛
, blue dotted line), NO3+NO2 is 

significantly correlated with NH4 at lags 1:6, with highest correlation at lag 0. 

 

 Last, although identifying predictors of DIN dynamics was not the focus of this 

thesis, the unexpected dynamics of the signal prompted some comparison to a monthly 

NAO index. NAO is not a single factor of environmental change but instead represents 

a complex of ecosystem traits, with positive years tending to have stronger southern 

wind, cloudier, and milder winters (Hurrell 1995). Negative NAO years tend to have 

colder, sunnier, and windier winters (Hurrell 1995).  Investigation of plankton 

dynamics have—in some cases—been associated with NAO indices, including in 

Narragansett Bay (D. G. Borkman and Smayda 2009).  Thereby, there was some 
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justification to explore how the NAO index may be related to DIN in an exploratory 

sense. Both show multiyear patterns in terms of their variability as well. At the annual 

and multiyear scale, significant coherence is seen between the NAO signal and DIN, 

suggesting an interesting subject for future investigation would be to investigate why 

DIN signal shows multiyear variability and not long-term patterns parallel to 

anthropogenic forcing (appx. fig. 8, 9). Because the NAO is a complex of 

environmental changes, potentially causal mechanisms are not obvious, but the 

coherence between the series suggests there are at least associations between this and 

the nutrient signal that are worth future investigation. 

 

Chlorophyll a <20 & >20µm 

Decomposition of the <20 chlorophyll series show variable levels in the 

dynamic intercept over the observation period, with an increase from before 2005 

(0.59+0.22) to after 2012 (0.91+0.33), comparing the posterior distributions from 

these two periods, however, this is not a significant increase (p=0.15, fig. 11, 12). The 

seasonal signal shows clear annual periodicity, with some complex features likely due 

to bloom events. Overall, the amplitude of the seasonal signal increases with time, 

particularly in the years after 2012. This feature of increasing seasonal amplitude is 

also evidenced in the wavelet analysis performed on the imputed data series (fig. 13), 

where the annual cycle strengthens following the 2012 period.  
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Figure 11. Decomposition of <20 µm Chl. a DLM (2003-2019), fit with a dynamic 

intercept and 5 seasonal components with periods of (52.17,…,48.17 weeks). Original 

data were fit on the log scale. Posterior states were back-transformed by 

exponentiation. a. the dynamic intercept, b. the seasonal trend, c. the posterior 

predicted mean (blue) with the true data (red).  For the dynamic intercept and the 

season, the median (black), 80% (dark grey shading), and 95% (light grey shading) are 

shown. 
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Decomposition of the >20 chlorophyll series show variable levels in the 

dynamic intercept over the observation period, with a marked decline beginning in 

2008 (fig. 14). While there is a slight uptick 2017-2019, the intercept of this period is 

still below that of the 2003-2008 period before declining levels. Comparing the 

posterior distribution of the intercepts from before 2005 (0.78+0.26) to after 2012 

(0.31+38), the later period is significantly lower (p=0.011, fig. 12, 14). The seasonal 

signal shows no clear pattern, with some complex features likely due to bloom events. 

Overall, the amplitude of the seasonal signal is variable in time, with lowest seasonal 

signals represented during the period when the intercept was also at its lowest. This 

feature of low seasonal amplitude during overall lower levels is also evidenced in the 

wavelet analysis performed on the imputed data series (fig. 15), where the annual 

cycle is weakest 2010-2016. Further, beyond the predictable annual cycle, lower 

period signals intermittently show strong power in this series, suggesting the 

importance of finer scale events such as blooms.  

Beyond mean levels, the observational matrix of the bivariate DLM for 

chlorophyll shows sever features. The >20 chlorophyll series shows inherently higher 

variability (1.1+0.02) than the <20 chlorophyll series (0.3+0.07, appx. fig. 10).  
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Figure 12. Density of the aggregated posterior dynamic intercept levels for the periods 

<2005, and greater than 2012 for the >20 and <20 µm Chl. a series.  
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Figure 13. Wavelet analysis of the <20 µm Chl. a with missing data periods imputed 

with the mean latent state ∑
𝐹𝑖,𝑇′𝜃𝑖,𝑇

𝑟
, 𝑟 = 𝑀𝐶𝑀𝐶 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑟

𝑖=1 . Dominant variability 

occurs at the annual frequency though at lower and higher periodicity (to multiyear), 

variability is observed.  
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Figure 14. Decomposition of >20 µm Chl. a DLM (2003-2019), fit with a dynamic 

intercept and 5 seasonal components with periods of (52.17,…,48.17 weeks). Original 

data were fit on the log scale. Posterior states were back-transformed by 

exponentiation. a. the dynamic intercept, b. the seasonal trend, c. the posterior 

predicted mean (blue) with the true data (red).  For the dynamic intercept and the 

season, the median (black), 80% (dark grey shading), and 95% (light grey shading) are 

shown. 
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Figure 15. Wavelet analysis of the >20 µm Chl. a with missing data periods imputed 

with the mean latent state ∑
𝐹𝑖,𝑇′𝜃𝑖,𝑇

𝑟
, 𝑟 = 𝑀𝐶𝑀𝐶 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑟

𝑖=1 . Dominant variability 

occurs at the annual frequency though at lower and higher periodicity (to multiyear), 

variability is observed.  

 

Using the above completed series of DIN, temperature, <20 µm Chl. a, 

and >20 µm Chl. a, the series were then compared with cross correlations, to 

characterize the relationship between the series across time lags (fig. 16). These cross-
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correlations help inform the significantly associated lags, and the strength of 

association between the series.  

After examining the cross correlation between the series and testing 

preliminary model structures, it was decided to use DIN as a regressor at lag 0, which 

shows the strongest cross-correlation to the chl. series (fig. 16). Using DIN instead of 

the NH4 and NO3+NO2 series as separate regressors statistically avoided 

multicollinearity issues considering the two series are correlated. Scientifically, they 

also both represent sources of N to phytoplankton, and studies in Narragansett Bay 

have shown no preference to N species by size fraction (Furnas 1983). Ultimately, this 

allowed testing of how the nitrogen signal is associated to different size fractions of 

bulk chlorophyll. Notably, the cross-correlations between chlorophyll and DIN are 

negative, which has an important scientific interpretation: considering the expectation 

is that high ambient nitrogen can produce high biomass as indicated by chlorophyll. 

This is motivated by studies which show N is typically the limiting nutrient for 

phytoplankton, including in NB (Sakshaug 1977). However, the negative relationship 

suggests that the ambient nitrogen levels may in fact be partly determined by the 

phytoplankton, and thereby changes in the DIN signal are describing growth in the 

phytoplankton biomass. The lag of this feature is also important. The highest cross-

correlation is at lag 0, suggests that the phytoplankton and nutrients are tightly coupled 

in time. For this reason, the lags 0 relations are explored to see how the relationship 

between phytoplankton and their nutrients could be changing with time. If the 

association between chl. and DIN increases, it would suggest that nutrients and 

biomass are becoming more tightly coupled. If the opposite occurs, it may mean that 
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there is an ecosystem shift to where other processes are dominating nutrient cycling 

and phytoplankton dynamics. In the second stage of the model, I fit a bivariate DLM 

with a static seasonal component, dynamic intercept, and dynamic regression with the 

DIN series. In this way, the regression with DIN captures anomalies in the chl. a 

series.  

 

Figure 16.  Cross correlations (y-axis) between the row and column variables in 

respective order, at different time lags (x-axis). The blue dotted line is the critical 

value for the 95% confidence level (1.96/√𝑛), which represents the threshold for 

significant cross-correlations. 
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4.2 Stage 2 Model 

For the bivariate regression model, with the true data fit with practical 

discounting and induced artificial missingness, while DIC, WAIC, and RMSE suggest 

the highest discount level model (𝛿𝜇 = 0.99, 𝛿𝛽 =0.999, appx. tables 22-23), RMSFE 

suggested a more flexible model (𝛿𝜇 = 0.99, 𝛿𝛽 =0.99, appx. table 24). Considering 

the simulation study, RMSFE is evidenced as a reliable metric with both practical and 

standard discounting in data series with long period missingness. As was seen in 

simulation, DIC, WAIC, and RMSE tended toward more static models, particularly 

with long-period missingness.  

For final model interpretation, no artificial missingness was introduced. Again, 

DIC and WAIC suggested 𝛿𝜇 = 0.9, 𝛿𝛽 =0.999 and 𝛿𝜇 = 0.99, 𝛿𝛽 =0.999 

respectively as the optimal model (appx. table 25). RMSFE suggested 𝛿𝜇 = 0.80, 

𝛿𝛽 =0.90 as more flexible model (appx. table 26). In total in terms of the discount 

factors selected, this model selection suggests there is a long-term trend in the 

chlorophyll series, varying slowly over the years as evidenced by the dynamic 

intercept. Further the selection of the discount factor for the regression coefficient 

suggests that the association between chlorophyll and the environment is time-varying.  

Considering the low discount factor set selected in this case, with potentially 

too much adaptability from the selection of separate discount factors, the subset of 

models with identical discount factors was considered. In this case, the optimal model 

according to RMSFE was with 𝛿𝜇,𝛽=0.85 (fig. 17, appx. table 27). While this still 

suggests a highly flexible model, and relatively low signal in the data, it does still 

make apparent some of the meaningful dynamics in relation to each chl. a series and 
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the DIN series. For the chl. a <20 𝜇m series, for the period prior to 2005 to that after 

2012, there was no significant difference in the regression coefficient (fig. 18, p= 

0.31). Considering the confidence intervals for the chl. a <20 𝜇m series, the regression 

coefficient was also not significantly different form 0. For the chl. a >20 𝜇m series, for 

the period prior to 2005 to that after 2012, there was no significant difference in the 

regression coefficient (fig. 19, p= 0.485). Considering the confidence intervals for the 

chl. a >20 𝜇m series, the regression coefficient was periodically significantly different 

from 0. Wavelet analysis suggested this coefficient takes an annual cycle (fig. 20). 

Aggregating the mean coefficient across all years and comparing across the annual 

cycle, the strongest association tends to occur in the winter, suggesting the large 

phytoplankton are seasonally tied to the ambient nutrient signal (fig. 21). Evolutional 

covariance showed that there is a seasonal pattern to the evolutional rate in the state 

components (appx. fig. 11). The observational error, which also serves to represent 

cross series covariance shows similar results as the non-regression models in stage 1, 

where the larger size fraction of chl. a is more variable than the smaller size fraction, 

with a positive covariance between the series (appx. fig. 12). ACF of the residuals 

showed there was no significant temporal structure left in the data (appx. fig. 13). 

With this model, residuals were reduced to white noise. 

 Discount factor sampling was implemented with the full data series, however, 

there was no mixing in the sampling for the discount factor. 
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Figure 17. Posterior distributions for RMSFE for each model with fixed discount 

factors for 𝜇 and 𝛽 (fill color), fit to true data in the case with no artificial missingness. 
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Figure 18. Decomposition of <20 µm Chl. a DLRM fit with a dynamic intercept, 

static seasonal component with a period of 52.17 weeks and regression component. a. 

the dynamic intercept, b. the regression component (𝛽𝑡𝑋𝑡), c. the regression 

coefficient (𝛽), d. the seasonal cycle e. the posterior predicted mean (blue) with the 

true data (red).  The median (black), 80% (dark grey shading), and 95% (light grey 

shading) are shown. 
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Figure 19. Decomposition of >20 µm Chl. a DLRM fit with a dynamic intercept, 

static seasonal component with a period of 52.17 weeks, and regression component. a. 

the dynamic intercept, b. the regression component (𝛽𝑡𝑋𝑡), c. the regression 

coefficient (𝛽), d. the seasonal cycle e. the posterior predicted mean (blue) with the 

true data (red).  The median (black), 80% (dark grey shading), and 95% (light grey 

shading) are shown. 
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Figure 20. Wavelet decomposition of the regression coefficient on the latent state of 

DIN for the chl. a >20 µm series.  
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Figure 21. Dynamic regression coefficient on DIN for the chl. a > 20 µm, plotted by 

week on the x-axis, and by year as denoted by color shading. The seasonal pattern in 

the regression coefficient is exemplified by the loess smooth fit and 95% confidence 

interval.  
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CHAPTER 5 

 

DISCUSSION 

5.1 Physical and Chemical Change in Narragansett Bay 

First, analysis of the DIN and temperature series with DLMs showed that the 

hypothesized patterns of change did not hold. In terms of temperature, although a 

linear trend has been repeatedly used to describe long-term change in the bay, which 

may generally hold on longer time scales,  the dynamic intercept had a 95% CI range 

of 3.32°C as compared to the mean 1.5°C warming documented since 1959 (Fulweiler 

et al. 2015). This suggests that multiyear cycles have 66% greater magnitude than the 

past 60 years of climate warming. While this is not to suggest long-term warming is 

not evident, multiyear variations may dominate the temperature signal when trying to 

map environmental change to biological responses. Multiyear patterns could drive 

changes in temperature dependent biogeochemistry. 

Beyond long-term mean levels in the temperature series, the seasonal signal 

shows anisotropic variability. That is, winter and summer are not equally variable. 

Winter temperatures of the posterior mean predicted (0.68+1.6), more variable than 

summer maxima (24.15+1.12). This is consistent with the previous finding that winter 

temperatures may be more susceptible to warming as compared to summer 

temperatures (Fulweiler et al. 2015). Biologically this represents a concern for the 

cold-water species of Narragansett Bay which may not be able to tolerate 

intermittently warm winters(Prog et al. 1984; Borkman and Smayda 2009). In terms of 

the size structure of the bay, altogether, this result in combination with the finding of 
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multiyear variability suggest that the expected pattern of net warming inducing a shift 

toward smaller organisms is unfounded. While multiyear variations in temperature 

could potentially influence the community structure, net switching toward smaller 

organisms does not match the temperature signal, which shows no net increase over 

this period of study from 2003 to 2019. 

While Rhode Island state law mandated the reduction of 50% from wastewater 

effluent into the bay during the period of 2005-2012 (NBEP 2017, Oczkowski et al. 

2018), net changes in the ambient DIN signal or its constituents at NBSII were not 

apparent. Notably, this does not mean that reduction in nutrient pollution did not take 

place and was not effective. Cross-sectional studies with spatial resolution showed net 

decline in nutrient levels at more northern locations closer to point sources of nutrient 

influx (Oviatt et al. 2017, fig. 22). Further, it has also been suggested that the benthos 

of the bay may be a major N source, which would potentially stabilize ambient levels 

(Nixon et al. 2009). Instead of a clear monotonic drawdown in nutrients, there is 

multiyear variability apparent both in seasonal cycle and mean log levels. Cross-

correlation of DIN, showed significant correlation to both series, suggesting an 

interesting linkage to the biological feature of chlorophyll of all sizes.  The high 

correlation between DIN and each chlorophyll signal at lag 0 suggested that these 

series are tightly linked in time, and that both the biology and ambient nutrients 

respond quickly to each other. This is consistent with laboratory work in 

phytoplankton which has showed that phytoplankton growth is impacted by nutrient 

variation within 24 hours, much finer than the weekly resolution of the data presented 

here (Collos 1986).  
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Figure 22. Map of all 19 discharge locations for wastewater in RI, reproduced from 

(RI DEM, 2016). Point sources are concentrated in northern reaches in the bay which 

also experience less flushing from the ocean.  

 

Because the constituents of DIN (NH4 and NO3+NO2) are highly correlated 

(0.50+0.037) and phytoplankton are generally capable of using both forms of N 

(Glibert and Garside 1992), it was decided to relate DIN to the chlorophyll series. The 
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high correlation between the covariates was of particular concern in part because of 

identifiability in DLMs and bias variance tradeoff. Too many parameters in the DLM 

model, where each variable is also ‘flexible’ in time can result in identifiability issues, 

high variance in the estimates, and a more minor but computation concern of highly 

correlated MCMC chain sequences (Gelman et al. 2014; West and Harrison 1997), 

which hypothetically could require prohibitively long MCMC simulations to produce 

a sufficient effective sample size. Considering the DIN constituents, both series of N 

species show a high correlation of (0.50+0.037), with overall higher variability in the 

NO3+ NO2 (0.94+0.07), as compared to NH4 (0.74+0.05). The CCF between 

NO3+NO2 and NH4 showed the strongest correlation at lag 0 (0.42), but also some 

significant positive cross-correlations with NH4 at lags 1:6, suggesting NH4 can trail 

behind NO3+NO2. Biologically, this could be representative of processes like 

preferential uptake in bloom dynamics (Dugdale et al. 2007) remineralization of NH4 

which occurs from both benthic and pelagic organisms (Goeyens et al. 1987; Probyn 

1987). This cross-correlation by itself is interesting as it suggests variation in the 

NO3+NO2 may influence other nutrient species (i.e. NH4) as much as 6 weeks later. 

Again, the significant correlation at lag 0 and 1 for DIN with chlorophyl suggests 

phytoplankton are consistently responding rapidly to nutrient changes in the bay 

whereas other components of the microbial loop, which are thought to fuel nutrient 

regeneration (Laybourn-Parry and Parry 2000), may take weeks to respond. These 

rates of response between different members of marine microbial ecosystems are an 

active area of investigation with some conflicting results between studies depending 

the stressor and dataset. For example, spectral decomposition of time-series of 
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phytoplankton and zooplanktonic predators in the Western English Channel, have 

shown evidence that phytoplankton have whiter power spectra, suggesting dominant 

variability on short timescales as compared to zooplankton (Barton et al. 2020). 

Nevertheless, the choice to use DIN captures both of these series, as different 

phytoplankton are capable of utilizing both these nutrients and the chlorophyll series 

captures numerous species with different nutrient preferences (Dortch 1990).  

 While the practical applications of this work center around the size structural 

data and their relationship to the DIN signal, the exploratory comparison with NAO 

yielded interesting correlations between the series as represented by the wavelet 

coherency. While NAO is itself an index for a broad range in environmental features, 

each capable of affecting phytoplankton and their physical environment (Hurrell 

1995), it still provides an interesting subject for what could be influencing the 

multiyear patterns in all of the N series. The wavelet coherency shows that there is 

significant correlation between the DIN levels and the NAO index at both the annual 

and multi-year scales, suggesting that some of the long-term dynamics in nutrients 

may be related to this and possibly other multiyear climate patterns, and not just 

anthropogenically driven change, even as dramatic as 50% reduction in the largest 

pollutant source (NBEP 2017, Oczkowski et al. 2018).  

 

5.2 Size Structural Changes of Phytoplankton in Narragansett Bay 

Analysis of the size structural data with DLM’s show that there is a marked 

change in the size structure of phytoplankton in Narragansett Bay, with 

phytoplankton >20 𝜇m 0.47 μg L-1 lower (p= 0.011), and phytoplankton <20 𝜇m 0.32 
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μg L-1 higher, though, not significantly so (p=0.15). This suggests that across the 

period of nutrient reduction in the wastewater effluent of the bay, the phytoplankton of 

the Bay has undergone a major shift toward smaller organisms, mostly as a 

consequence of declining stocks of larger phytoplankton. Ecologically this is 

important because cell size of the phytoplankton community can have rippling effects 

through food webs (Finkel 2007). This size structural change aligns with hypotheses 

of nutrients in the bay, though those reductions were not detectible in the NBSII 

series. While phytoplankton >20 µm were more abundant than phytoplankton <20 µm 

prior to 2005, this reversed after 2012, with phytoplankton <20 µm more abundant 

than those > 20 µm. This suggests that, although there are still seasonal differences, 

Narragansett Bay has become dominated by smaller phytoplankton over a 

geochemically short span of time (7 years).  

Further, in terms of abundance patterns, while the <20 µm fraction of 

phytoplankton was not significantly increased in their mean, they do show an increase 

in their seasonal cycle following the end of nutrient reduction. This equates to higher 

summer maxima and lower winter minima. Though, after back transformation through 

exponentiation, these effects are most pronounced in the summer.  

In addition to long-term patterns of change, the univariate DLMs show that the 

phytoplankton >20 µm are inherently more variable, with an observational variance of 

1.05 +0.06. The phytoplankton <20 µm show much lower variability with a variance 

of 0.31+0.02. This suggests that larger plankton in the bay are potentially much 

patchier, and inherently more stochastic in their population dynamics. In contrast, 

stocks of smaller phytoplankton are much less stochastic. The difference in variance 
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between the two series has direct biological interpretation in line with hypotheses 

about bloom dynamics and grazing control such as the loophole hypothesis (Irigoien, 

Flynn, and Harris 2005). It has been suggested that in general smaller phytoplankton 

are more tightly coupled to predator control, and this results in more stable 

populations as compared to larger phytoplankton  (Irigoien, Flynn, and Harris 2005).  

The higher variance of the phytoplankton >20 µm, suggests this may be true locally in 

some of the fine scale dynamics in the standing stock. Overall, considering these 

differences in stochasticity, seasonal cycle, and long-term trend, it stands to question 

which phytoplankton species, might be driving the chlorophyll dynamics, and what 

might their specific ecology inform about these long-term changes.  

5.3 Selected Model and Dynamic Regression Signal with DIN 

 Ultimately, model selection tended toward low discount factors for 𝜇 and 𝛽, 

suggesting not only dynamic levels of each series over time, but also that the 

association with DIN is variable. As indicated graphically by the 95% CI, for most of 

the series the phytoplankton <20 µm are not significantly associated with DIN signal. 

This suggests, both that phytoplankton <20 µm are relatively invariant to ambient DIN 

signals and that DIN levels are not shaped by the phytoplankton <20 µm community 

in NB. Considering that after the nutrient reduction period, phytoplankton <20 µm are 

on average dominant in the phytoplankton community, it is thus surprising that they 

are still non-significantly related to the DIN signal.  

 In contrast to the phytoplankton <20 µm, phytoplankton >20 µm are often 

significantly tied to the DIN signal. However, the relationship between 

phytoplankton >20 µm and DIN is non-static and exhibits evidence of annual 
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cyclicity. In general, the regression coefficient is largest in magnitude and has the 

largest effect in winter periods. The lowest effect is in the summer. This suggests that 

the larger phytoplankton and DIN levels are more closely tied in the colder month 

periods when blooms are known to occur.  There is no clear long-term shift in the 

regression coefficient for the chl. a > 20 µm series. This suggests that for the 

phytoplankton > 20 µm, dependence on DIN has not shifted after nutrient reductions, 

and further that the potential role of larger phytoplankton as biogeochemical engineers 

has not been impacted despite the apparent declines in the representation of this size 

class.  
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APPENDICES 

 

 

Figure 1. Posterior distributions for a. RMSFE b. RMSFE2 c. RMSE d. RMSE2 for 

each model with fixed discount factors for 𝜇 and 𝛽 (fill color), fit to simulated data 

with missingness where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99. 
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Figure 2. Trace and density plots of the observational and evolutional variance 

components in the state and observation equation fits. a. Evolutional variance of the 

dynamic intercept. b. Evolutional variance of the seasonal frequency c. Evolutional 

variance of the conjugate of the seasonal frequency. d. Observational variance of the 

series.  



 

70 

 

 

Figure 3. Wavelet analysis of the temperature series with missing data periods 

imputed with the mean latent state ∑
𝐹𝑖,𝑇′𝜃𝑖,𝑇

𝑟
, 𝑟 = 𝑀𝐶𝑀𝐶 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑟

𝑖=1 . Dominant 

variability occurs at the annual frequency, though at lower and higher periodicity (to 

multiyear), variability is observed.  
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Figure 4. Trace and density plots of the observational variance and correlation of the 

NH4 and NO3+NO2 series a. Observational variance of the NH4 dynamic intercept. b. 

Observational variance of the NO3+NO2 seasonal frequency c. Observational 

covariance of the NH4 and NO3+NO2 series. 
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Figure 5. Coherence between NH4 and NO3+NO2. Arrows indicate the angle of 

cohesion, with those pointing right and up show that NO3+NO2 is leading in the 

dynamics at that scale. This suggest the annual cycle of NH4 is lagged behind 

NO3+NO2 dynamics. While the magnitude of coherence decreases with decreasing 

period, notably, the method uses smoothing which may obfuscate finer scale 

dynamics.  
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Figure 6. Wavelet analysis of the NH4 series with missing data periods imputed with 

the mean latent state ∑
𝐹𝑖,𝑇′𝜃𝑖,𝑇

𝑟
, 𝑟 = 𝑀𝐶𝑀𝐶 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑟

𝑖=1 . Dominant variability 

occurs at the annual frequency though at lower and higher periodicity (to multiyear), 

variability is observed.  
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Figure 7. Wavelet analysis of the NO3+NO2 with missing data periods imputed with 

the mean latent state ∑
𝐹𝑖,𝑇′𝜃𝑖,𝑇

𝑟
, 𝑟 = 𝑀𝐶𝑀𝐶 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑟

𝑖=1 . Dominant variability 

occurs at the annual frequency though at lower and higher periodicity (to multiyear), 

variability is observed. 

 
Figure 8. Wavelet analysis of the NAO index series.  
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Figure 9. Coherence between DIN and the NAO index. Arrows pointing right and up 

indicate the angle of cohesion and that the NAO index is leading in the dynamics at 

that scale. This suggest the annual cycle of DIN is lagged behind NAO index at the 

annual scale and potentially synchronous at the multiyear scale. While the magnitude 

of coherency decreases with decreasing period, notably, the method uses smoothing 

which may obfuscate finer scale dynamics.  
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Figure 10. Trace and density plots of the observational variance and correlation of 

the >20 µm and <20 µm Chl. a series a. Observational variance of the >20 µm series. 

b. Observational variance of the <20 µm series c. Observational correlation of the >20 

µm and <20 µm series. 
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Figure 11. Trace and density plots of the evolutional variance and correlation of the 

dynamic intercept and regression coefficients. a. Evolutional variance of the dynamic 

intercept b. Evolutional variance of the regression coefficient. The median (black), 

80% (dark grey shading), and 95% (light grey shading) are shown. 
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Figure 12. Trace and density plots of the observational variance and correlation of 

the >20 µm and <20 µm Chl. a series a. Observational variance of the >20 µm series. 

b. Observational variance of the <20 µm series c. Observational correlation of the >20 

µm and <20 µm series. 
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Figure 13. Autocorrelation in the residuals of the dynamic regression model of 

the >20 µm and <20 µm Chl. a series. 
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Table 1. DIC and WAIC calculated for each model with fixed discount factors for 𝜇 

and 𝛽, fit to simulated data with missingness where the data generation model was 

𝛿𝜇 = 0.999, 𝛿𝛽 =0.99. 

𝛿𝜇 𝛿𝛽 DIC WAIC 

0.95 0.95 4112.363 4590.61 

0.95 0.99 3477.201 3621.86 

0.95 0.999 3328.274 3413.224 

0.99 0.95 3860.554 4165.332 

0.99 0.99 3417.666 3509.669 

0.99 0.999 3314.376 3348.018 

0.999 0.95 3998.256 4340.894 

0.999 0.99 3509.048 3610.245 

0.999 0.999 3370.816 3392.343 
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Table 2. Type 1 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99. Each cell is the probability that the RMSFE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 

 

 

 

 

 

 

  

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0.000 0.891 0.851 0.617 0.919 0.871 0.472 0.827 0.645 

0.95_0.99 0.109 0.000 0.460 0.125 0.589 0.403 0.065 0.290 0.060 

0.95_0.999 0.149 0.540 0.000 0.153 0.726 0.500 0.073 0.367 0.065 

0.99_0.95 0.383 0.875 0.847 0.000 0.964 0.891 0.355 0.810 0.492 

0.99_0.99 0.081 0.411 0.274 0.036 0.000 0.218 0.008 0.085 0.004 

0.99_0.999 0.129 0.597 0.500 0.109 0.782 0.000 0.065 0.298 0.008 

0.999_0.95 0.528 0.935 0.927 0.645 0.992 0.935 0.000 0.923 0.685 

0.999_0.99 0.173 0.710 0.633 0.190 0.915 0.702 0.077 0.000 0.048 

0.999_0.999 0.355 0.940 0.935 0.508 0.996 0.992 0.315 0.952 0.000 
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Table 3. Type 2 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99. Each cell is the probability that the RMSFE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0.000 0.552 0.581 0.544 0.548 0.593 0.520 0.589 0.605 

0.95_0.99 0.448 0.000 0.560 0.540 0.540 0.573 0.480 0.577 0.569 

0.95_0.999 0.419 0.440 0.000 0.492 0.528 0.573 0.452 0.569 0.560 

0.99_0.95 0.456 0.460 0.508 0.000 0.492 0.548 0.480 0.556 0.548 

0.99_0.99 0.452 0.460 0.472 0.508 0.000 0.552 0.492 0.504 0.565 

0.99_0.999 0.407 0.427 0.427 0.452 0.448 0.000 0.407 0.472 0.464 

0.999_0.95 0.480 0.520 0.548 0.520 0.508 0.593 0.000 0.581 0.597 

0.999_0.99 0.411 0.423 0.431 0.444 0.496 0.528 0.419 0.000 0.544 

0.999_0.999 0.395 0.431 0.440 0.452 0.435 0.536 0.403 0.456 0.000 
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Table 4. Type 1 RMSE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99. Each cell is the probability that the RMSE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0.000 0.613 0.742 0.484 0.754 0.847 0.565 0.714 0.911 

0.95_0.99 0.387 0.000 0.593 0.399 0.605 0.798 0.444 0.601 0.819 

0.95_0.999 0.258 0.407 0.000 0.319 0.569 0.722 0.339 0.532 0.819 

0.99_0.95 0.516 0.601 0.681 0.000 0.718 0.827 0.548 0.766 0.867 

0.99_0.99 0.246 0.395 0.431 0.282 0.000 0.621 0.319 0.464 0.637 

0.99_0.999 0.153 0.202 0.278 0.173 0.379 0.000 0.210 0.319 0.504 

0.999_0.95 0.435 0.556 0.661 0.452 0.681 0.790 0.000 0.702 0.863 

0.999_0.99 0.286 0.399 0.468 0.234 0.536 0.681 0.298 0.000 0.702 

0.999_0.999 0.089 0.181 0.181 0.133 0.363 0.496 0.137 0.298 0.000 
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Table 5. Type 2 RMSE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99. Each cell is the probability that the RMSE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0.000 0.944 0.931 0.746 0.895 0.911 0.649 0.847 0.859 

0.95_0.99 0.056 0.000 0.706 0.395 0.782 0.831 0.363 0.641 0.730 

0.95_0.999 0.069 0.294 0.000 0.375 0.669 0.750 0.319 0.581 0.685 

0.99_0.95 0.254 0.605 0.625 0.000 0.903 0.891 0.431 0.738 0.786 

0.99_0.99 0.105 0.218 0.331 0.097 0.000 0.694 0.198 0.460 0.565 

0.99_0.999 0.089 0.169 0.250 0.109 0.306 0.000 0.177 0.423 0.540 

0.999_0.95 0.351 0.637 0.681 0.569 0.802 0.823 0.000 0.940 0.944 

0.999_0.99 0.153 0.359 0.419 0.262 0.540 0.577 0.060 0.000 0.778 

0.999_0.999 0.141 0.270 0.315 0.214 0.435 0.460 0.056 0.222 0.000 
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Table 6. DIC and WAIC calculated for each model with fixed discount factors for 𝜇 

and 𝛽, fit to simulated data with missingness where the data generation model was 

𝛿𝜇 = 0.999, 𝛿𝛽 =0.99, and practical discounting was used. 

 

𝛿𝜇 𝛿𝛽 DIC WAIC 

0.95 0.95 3922 4279 

0.95 0.99 3467 3602 

0.95 0.999 3337 3414 

0.99 0.95 3755 4020 

0.99 0.99 3420 3493 

0.99 0.999 3317 3352 

0.999 0.95 3871 4151 

0.999 0.99 3508 3605 

0.999 0.999 3378 3402 
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Table 7. Type 1 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99 and practical discounting was used. Each cell is the probability that the 

RMSFE of the row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0 0.808 0.788 0.536 0.888 0.776 0.36 0.7 0.344 

0.95_0.99 0.192 0 0.428 0.192 0.52 0.328 0.064 0.168 0.036 

0.95_0.999 0.212 0.572 0 0.2 0.568 0.3 0.068 0.192 0.04 

0.99_0.95 0.464 0.808 0.8 0 0.88 0.768 0.304 0.644 0.308 

0.99_0.99 0.112 0.48 0.432 0.12 0 0.22 0.02 0.1 0 

0.99_0.999 0.224 0.672 0.7 0.232 0.78 0 0.056 0.28 0.008 

0.999_0.95 0.64 0.936 0.932 0.696 0.98 0.944 0 0.86 0.516 

0.999_0.99 0.3 0.832 0.808 0.356 0.9 0.72 0.14 0 0.044 

0.999_0.999 0.656 0.964 0.96 0.692 1 0.992 0.484 0.956 0 
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Table 8. Type 2 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99 and practical discounting was used. Each cell is the probability that the 

RMSFE of the row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0 0.903226 0.854839 0.725806 0.875 0.883065 0.58871 0.758065 0.814516 

0.95_0.99 0.096774 0 0.693548 0.366935 0.745968 0.810484 0.375 0.552419 0.657258 

0.95_0.999 0.145161 0.306452 0 0.310484 0.608871 0.709677 0.350806 0.5 0.600806 

0.99_0.95 0.274194 0.633065 0.689516 0 0.895161 0.907258 0.447581 0.697581 0.778226 

0.99_0.99 0.125 0.254032 0.391129 0.104839 0 0.681452 0.209677 0.467742 0.560484 

0.99_0.999 0.116935 0.189516 0.290323 0.092742 0.318548 0 0.201613 0.407258 0.479839 

0.999_0.95 0.41129 0.625 0.649194 0.552419 0.790323 0.798387 0 0.923387 0.935484 

0.999_0.99 0.241935 0.447581 0.5 0.302419 0.532258 0.592742 0.076613 0 0.75 

0.999_0.999 0.185484 0.342742 0.399194 0.221774 0.439516 0.520161 0.064516 0.25 0 
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Table 9. Type 1 RMSE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99 and practical discounting was used. Each cell is the probability that the 

RMSE of the row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0 0.68 0.876 0.512 0.684 0.908 0.532 0.708 0.928 

0.95_0.99 0.32 0 0.716 0.364 0.536 0.868 0.392 0.536 0.836 

0.95_0.999 0.124 0.284 0 0.176 0.356 0.772 0.204 0.356 0.764 

0.99_0.95 0.488 0.636 0.824 0 0.66 0.892 0.524 0.724 0.888 

0.99_0.99 0.316 0.464 0.644 0.34 0 0.784 0.38 0.5 0.772 

0.99_0.999 0.092 0.132 0.228 0.108 0.216 0 0.124 0.172 0.328 

0.999_0.95 0.468 0.608 0.796 0.476 0.62 0.876 0 0.644 0.92 

0.999_0.99 0.292 0.464 0.644 0.276 0.5 0.828 0.356 0 0.78 

0.999_0.999 0.072 0.164 0.236 0.112 0.228 0.672 0.08 0.22 0 
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Table 10. Type 2 RMSE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.999, 𝛿𝛽 =0.99 and practical discounting was used. Each cell is the probability that the 

RMSE of the row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 0.999_0.95 0.999_0.99 0.999_0.999 

0.95_0.95 0 0.903226 0.854839 0.725806 0.875 0.883065 0.58871 0.758065 0.814516 

0.95_0.99 0.096774 0 0.693548 0.366935 0.745968 0.810484 0.375 0.552419 0.657258 

0.95_0.999 0.145161 0.306452 0 0.310484 0.608871 0.709677 0.350806 0.5 0.600806 

0.99_0.95 0.274194 0.633065 0.689516 0 0.895161 0.907258 0.447581 0.697581 0.778226 

0.99_0.99 0.125 0.254032 0.391129 0.104839 0 0.681452 0.209677 0.467742 0.560484 

0.99_0.999 0.116935 0.189516 0.290323 0.092742 0.318548 0 0.201613 0.407258 0.479839 

0.999_0.95 0.41129 0.625 0.649194 0.552419 0.790323 0.798387 0 0.923387 0.935484 

0.999_0.99 0.241935 0.447581 0.5 0.302419 0.532258 0.592742 0.076613 0 0.75 

0.999_0.999 0.185484 0.342742 0.399194 0.221774 0.439516 0.520161 0.064516 0.25 0 
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Table 11. DIC and WAIC calculated for each model with fixed discount factors for 𝜇 

and 𝛽, fit to simulated data with missingness where the data generation model was 

𝛿𝜇 = 0.95, 𝛿𝛽 =0.99 and standard discounting was used. 

𝛿𝜇 𝛿𝛽  DIC WAIC 

0.95 0.95 4878.65 5805.761 

0.95 0.99 3884.765 4256.285 

0.95 0.999 3760.02 4054.729 

0.99 0.95 4457.628 5061.727 

0.99 0.99 3759.542 3966.759 

0.99 0.999 3659.232 3816.543 
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Table 12. Type 1 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the RMSFE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0 0.752 0.524 0.1 0.084 0.02 

0.95_0.99 0.248 0 0.212 0.012 0.004 0.004 

0.95_0.999 0.476 0.788 0 0.028 0.004 0.004 

0.99_0.95 0.9 0.988 0.972 0 0.424 0.212 

0.99_0.99 0.916 0.996 0.996 0.576 0 0.124 

0.99_0.999 0.98 0.996 0.996 0.788 0.876 0 

 

Table 13. Type 2 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the RMSFE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0.000 0.614 0.568 0.490 0.552 0.553 

0.95_0.99 0.386 0.000 0.488 0.422 0.479 0.500 

0.95_0.999 0.432 0.512 0.000 0.451 0.497 0.506 

0.99_0.95 0.510 0.578 0.549 0.000 0.602 0.591 

0.99_0.99 0.448 0.521 0.503 0.398 0.000 0.512 

0.99_0.999 0.447 0.500 0.494 0.409 0.488 0.000 
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Table 14. Type 1 RMSE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the RMSFE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0 0.652 0.58 0.524 0.612 0.524 

0.95_0.99 0.348 0 0.428 0.38 0.492 0.42 

0.95_0.999 0.42 0.572 0 0.404 0.568 0.456 

0.99_0.95 0.476 0.62 0.596 0 0.632 0.54 

0.99_0.99 0.388 0.508 0.432 0.368 0 0.428 

0.99_0.999 0.476 0.58 0.544 0.46 0.572 0 

 

Table 15. Type 2 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to simulated data with missingness 

where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the RMSFE of the row index exceeds that 

of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0.000 0.903 0.879 0.645 0.806 0.823 

0.95_0.99 0.097 0.000 0.581 0.355 0.621 0.641 

0.95_0.999 0.121 0.419 0.000 0.347 0.597 0.637 

0.99_0.95 0.355 0.645 0.653 0.000 0.895 0.895 

0.99_0.99 0.194 0.379 0.403 0.105 0.000 0.617 

0.99_0.999 0.177 0.359 0.363 0.105 0.383 0.000 
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Table 16. DIC and WAIC calculated for each model with fixed discount factors for 𝜇 

and 𝛽, fit with practical discounting to simulated data with missingness where the data 

generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. 

𝛿𝜇 𝛿𝛽  DIC WAIC 

0.95 0.95 90139.9 150694.7 

0.95 0.99 72077.36 122939.5 

0.95 0.999 34421.1 51847.42 

0.99 0.95 58866.3 90461.28 

0.99 0.99 36624.13 59817.27 

0.99 0.999 50947.16 96132.38 
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Table 17. Type 1 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit with practical discounting to 

simulated data with missingness where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the 

RMSFE of the row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0 0.616 0.324 0.064 0.008 0 

0.95_0.99 0.384 0 0.14 0.004 0.004 0.004 

0.95_0.999 0.676 0.86 0 0.028 0.004 0.004 

0.99_0.95 0.936 0.996 0.972 0 0.284 0.136 

0.99_0.99 0.992 0.996 0.996 0.716 0 0.108 

0.99_0.999 1 0.996 0.996 0.864 0.892 0 

 

Table 18. Type 2 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit with practical discounting to 

simulated data with missingness where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the 

RMSFE of the row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0 0.568213 0.563438 0.466576 0.508186 0.523192 

0.95_0.99 0.431787 0 0.52251 0.444065 0.497271 0.510232 

0.95_0.999 0.436562 0.47749 0 0.444748 0.45839 0.489086 

0.99_0.95 0.533424 0.555935 0.555252 0 0.593452 0.579809 

0.99_0.99 0.491814 0.502729 0.54161 0.406548 0 0.527967 

0.99_0.999 0.476808 0.489768 0.510914 0.420191 0.472033 0 
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Table 19. Type 1 RMSE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit with practical discounting to simulated 

data with missingness where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the RMSFE of the 

row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0 0.472 0.524 0.496 0.564 0.512 

0.95_0.99 0.528 0 0.532 0.504 0.564 0.548 

0.95_0.999 0.476 0.468 0 0.452 0.52 0.512 

0.99_0.95 0.504 0.496 0.548 0 0.568 0.564 

0.99_0.99 0.436 0.436 0.48 0.432 0 0.488 

0.99_0.999 0.488 0.452 0.488 0.436 0.512 0 

 

Table 20. Type 2 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit with practical discounting to 

simulated data with missingness where the data generation model was 𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. Each cell is the probability that the 

RMSFE of the row index exceeds that of the column index. The optimal model is highlighted in light grey. 

 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.95_0.95 0 0.858871 0.842742 0.58871 0.745968 0.794355 

0.95_0.99 0.141129 0 0.653226 0.306452 0.600806 0.633065 

0.95_0.999 0.157258 0.346774 0 0.245968 0.548387 0.572581 

0.99_0.95 0.41129 0.693548 0.754032 0 0.907258 0.887097 

0.99_0.99 0.254032 0.399194 0.451613 0.092742 0 0.620968 

0.99_0.999 0.205645 0.366935 0.427419 0.112903 0.379032 0 
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Table 21. DIC and WAIC calculated for each model with fixed discount factors for 𝜇 

and 𝛽, fit to simulated data with no missingness where the data generation model was 

𝛿𝜇 = 0.95, 𝛿𝛽 =0.99. 

𝛿𝜇 𝛿𝛽  DIC WAIC 

0.95 0.95 90139.9 150694.7 

0.95 0.99 72077.36 122939.5 

0.95 0.999 34421.1 51847.42 

0.99 0.95 58866.3 90461.28 

0.99 0.99 36624.13 59817.27 

0.99 0.999 50947.16 96132.38 

 

 

Table 22. DIC and WAIC calculated for each model with fixed discount factors for 𝜇 

and 𝛽, fit to the true data with artificial missingness. 

𝛿𝜇  𝛿𝛽  DIC WAIC 

0.9 0.95 4005.839 4920.432 

0.9 0.99 3226.983 3700 

0.9 0.999 3049.024 3407.732 

0.95 0.95 3856.14 4628.743 

0.95 0.99 3223.991 3595.045 

0.95 0.999 3064.359 3370.367 

0.99 0.95 3507.952 3997.436 

0.99 0.99 3163.408 3434.308 

0.99 0.999 3066.24 3286.251 
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Table 23. Type 1 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to the true data with artificial 

missingness. Each cell is the probability that the RMSFE of the row index exceeds that of the column index. The optimal model is 

highlighted in light grey. 

 0.9_0.95 0.9_0.99 0.9_0.999 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.9_0.95 0 0.7 0.732 0.656 0.812 0.86 0.816 0.932 0.96 
0.9_0.99 0.3 0 0.512 0.504 0.668 0.712 0.668 0.848 0.888 
0.9_0.999 0.268 0.488 0 0.508 0.66 0.704 0.688 0.884 0.888 
0.95_0.95 0.344 0.496 0.492 0 0.608 0.668 0.68 0.848 0.84 
0.95_0.99 0.188 0.332 0.34 0.392 0 0.608 0.544 0.748 0.784 
0.95_0.999 0.14 0.288 0.296 0.332 0.392 0 0.468 0.716 0.708 
0.99_0.95 0.184 0.332 0.312 0.32 0.456 0.532 0 0.7 0.688 
0.99_0.99 0.068 0.152 0.116 0.152 0.252 0.284 0.3 0 0.488 
0.99_0.999 0.04 0.112 0.112 0.16 0.216 0.292 0.312 0.512 0 
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Table 24. Type 1 RMSE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to the true data with artificial 

missingness. Each cell is the probability that the RMSFE of the row index exceeds that of the column index. The optimal model is 

highlighted in light grey. 

 0.9_0.95 0.9_0.99 0.9_0.999 0.95_0.95 0.95_0.99 0.95_0.999 0.99_0.95 0.99_0.99 0.99_0.999 

0.9_0.95 0 0.7 0.696 0.588 0.776 0.776 0.724 0.88 0.876 

0.9_0.99 0.3 0 0.564 0.4 0.612 0.664 0.524 0.7 0.796 

0.9_0.999 0.304 0.436 0 0.352 0.544 0.584 0.452 0.648 0.7 

0.95_0.95 0.412 0.6 0.648 0 0.728 0.764 0.644 0.804 0.872 

0.95_0.99 0.224 0.388 0.456 0.272 0 0.56 0.372 0.592 0.68 

0.95_0.999 0.224 0.336 0.416 0.236 0.44 0 0.332 0.512 0.64 

0.99_0.95 0.276 0.476 0.548 0.356 0.628 0.668 0 0.712 0.772 

0.99_0.99 0.12 0.3 0.352 0.196 0.408 0.488 0.288 0 0.612 

0.99_0.999 0.124 0.204 0.3 0.128 0.32 0.36 0.228 0.388 0 
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Table 25. DIC and WAIC calculated for each model with fixed discount factors for 𝜇 

and 𝛽, fit to the true data with no artificial missingness. 

𝛿𝜇  𝛿𝛽  DIC WAIC 

0.8 0.8 1344299 2249522 

0.8 0.85 589180.7 1153076 

0.8 0.9 649766.1 845180.3 

0.85 0.8 885615.1 1246872 

0.85 0.85 794300.9 1276092 

0.85 0.9 368430.2 491328.9 

0.9 0.8 633079.4 1105831 

0.9 0.85 398712.5 621549.6 

0.9 0.9 282162 427507 

0.95 0.95 51921.3 65436.39 

0.95 0.99 42697.75 76718.33 

0.95 0.999 34009.99 63533.18 

0.99 0.95 77564.23 82744.16 

0.99 0.99 37995.08 54691.75 

0.99 0.999 37224.55 54232.08 

0.999 0.95 67989.94 160291.4 

0.999 0.99 37867.53 85436.49 

0.999 0.999 28503.83 58615.79 
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Table 26. Type 1 RMSFE calculated for each model with fixed discount factors for 𝜇 and 𝛽, fit to the true data with no artificial 

missingness. Each cell is the probability that the RMSFE of the row index exceeds that of the column index. The optimal model is 

highlighted in light grey. 
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0.8_0.8 0 0.788 0.952 0.372 0.664 0.828 0.232 0.376 0.512 0.148 0.112 0.112 0.044 0.016 0.02 0.02 0.012 0.008 

0.8_0.85 0.212 0 0.776 0.108 0.328 0.468 0.06 0.1 0.148 0.008 0.012 0.008 0 0 0 0 0 0 

0.8_0.9 0.048 0.224 0 0.032 0.092 0.192 0.012 0.016 0.04 0.008 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

0.85_0.8 0.628 0.892 0.968 0 0.756 0.92 0.344 0.556 0.652 0.204 0.152 0.156 0.068 0.036 0.04 0.032 0.012 0.012 

0.85_0.85 0.336 0.672 0.908 0.244 0 0.764 0.112 0.212 0.32 0.04 0.024 0.02 0.004 0 0 0 0 0 

0.85_0.9 0.172 0.532 0.808 0.08 0.236 0 0.032 0.068 0.116 0.004 0.004 0.004 0 0 0 0 0 0 

0.9_0.8 0.768 0.94 0.988 0.656 0.888 0.968 0 0.756 0.824 0.44 0.34 0.304 0.148 0.08 0.06 0.044 0.028 0.024 

0.9_0.85 0.624 0.9 0.984 0.444 0.788 0.932 0.244 0 0.62 0.184 0.112 0.076 0.02 0.008 0.004 0.004 0 0.004 

0.9_0.9 0.488 0.852 0.96 0.348 0.68 0.884 0.176 0.38 0 0.064 0.024 0.012 0.004 0 0 0 0 0 

0.95_0.95 0.852 0.992 0.992 0.796 0.96 0.996 0.56 0.816 0.936 0 0.352 0.248 0.02 0.004 0 0 0 0 

0.95_0.99 0.888 0.988 0.996 0.848 0.976 0.996 0.66 0.888 0.976 0.648 0 0.372 0.028 0 0 0 0 0 

0.95_0.999 0.888 0.992 0.996 0.844 0.98 0.996 0.696 0.924 0.988 0.752 0.628 0 0.064 0.004 0 0 0 0 

0.99_0.95 0.956 1 0.996 0.932 0.996 1 0.852 0.98 0.996 0.98 0.972 0.936 0 0.172 0.064 0.036 0.004 0 

0.99_0.99 0.984 1 0.996 0.964 1 1 0.92 0.992 1 0.996 1 0.996 0.828 0 0.36 0.26 0.024 0.008 

0.99_0.999 0.98 1 0.996 0.96 1 1 0.94 0.996 1 1 1 1 0.936 0.64 0 0.348 0.044 0.008 

0.999_0.95 0.98 1 0.996 0.968 1 1 0.956 0.996 1 1 1 1 0.964 0.74 0.652 0 0.144 0.08 

0.999_0.99 0.988 1 0.996 0.988 1 1 0.972 1 1 1 1 1 0.996 0.976 0.956 0.856 0 0.3 
0.999_0.99
9 0.992 1 0.996 0.988 1 1 0.976 0.996 1 1 1 1 1 0.992 0.992 0.92 0.7 0 
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Table 27.  Type 1 RMSFE calculated for each model with fixed, equal discount factors for 𝜇 and 𝛽, fit to the true data with no 

artificial missingness. Each cell is the probability that the RMSFE of the row index exceeds that of the column index. The optimal 

model is highlighted in light grey. 

 0.8_0.8 0.85_0.85 0.9_0.9 0.95_0.95 0.99_0.99 0.999_0.999 

0.8_0.8 0 0.664 0.512 0.148 0.016 0.008 

0.85_0.85 0.336 0 0.32 0.04 0 0 

0.9_0.9 0.488 0.68 0 0.064 0 0 

0.95_0.95 0.852 0.96 0.936 0 0.004 0 

0.99_0.99 0.984 1 1 0.996 0 0.008 

0.999_0.999 0.992 1 1 1 0.992 0 
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a.) Kalman Filter & Smoothing: 

• One-step -ahead predictive distribution of the latent state, 𝑓(𝜃𝑡|𝑦1:𝑡−1) =

𝑁(𝑎𝑡 , 𝑅𝑡), where: 

𝑎𝑡 = 𝐸(𝜃𝑡|𝑦1:𝑡−1) = 𝐺𝑡𝑚𝑡−1, 
𝑅𝑡 = 𝑉𝑎𝑟((𝜃𝑡|𝑦1:𝑡−1) = 𝐺𝑡𝐶𝑡−1𝐺𝑡

′ + 𝑊𝑡 

• One-step -ahead predictive distribution of the observation, 𝑓(𝑌𝑡|𝑦1:𝑡−1) =

𝑁(𝑓𝑡, 𝑄𝑡), where: 

𝑓𝑡 = 𝐸(𝑌𝑡|𝑦1:𝑡−1) = 𝐹𝑡𝑎𝑡 
𝑄𝑡 = 𝑉𝑎𝑟(𝑌𝑡|𝑦1:𝑡−1) = 𝐹𝑡𝑅𝑡𝐹𝑡

′ + 𝑉𝑡 

• The filtered distribution of the latent state, 𝑓(𝜃𝑡|𝑦1:𝑡) = 𝑁(𝑚𝑡 , 𝐶𝑡), where: 

𝑚𝑡 = 𝐸(𝜃𝑡|𝑦1:𝑡) = 𝑎𝑡 + 𝑅𝑡𝐹𝑡
′𝑄𝑡

−1𝑒𝑡, 
𝐶𝑡 = 𝑉𝑎𝑟(𝜃𝑡|𝑦1:𝑡 ) = 𝑅𝑡 − 𝑅𝑡𝐹𝑡

′𝑄𝑡
′𝐹𝑡𝑅𝑡 , 

𝑒𝑡 = 𝑌𝑡 − 𝑓𝑡   
• The smoothed distribution of the latent state,  𝑓(𝜃𝑡|𝑦1:𝑇) = 𝑁(𝑠𝑡 , 𝑆𝑡), 

where: 

𝑠𝑡 = 𝐸(𝜃𝑡|𝑦1:𝑇) = 𝑚𝑡 + 𝐶𝑡𝐺𝑡+1
′ 𝑅𝑡+1

′ (𝑠𝑡+1 − 𝑎𝑡+1), 
𝑆𝑡 = 𝐶𝑡 − 𝐶𝑡𝐺𝑡+1

′ 𝑅𝑡+1
−1 (𝑅𝑡+1)𝑅𝑡+1

−1 𝐺𝑡+1𝐶𝑡  
   

 

b.) Semi-conjugacy of inverse-gamma+ inverse-Wishart 

𝑝(𝑥|𝜇, 𝜎2) ∝ (𝜎2)
1
2𝑒

−
(∑ 𝑥𝑖−𝜇𝑛

𝑖=1 )
2

2𝜎2  

𝑝(𝜎2|𝛼, 𝛽) ∝
𝛽𝛼

Γ(𝛼)
(𝜎2)−𝛼−1𝑒

−𝛽
𝜎2  

𝑝(𝜎2|𝑥, 𝜇, 𝛼, 𝛽) ∝ 𝑝(𝑥|𝜇, 𝜎2)𝑝(𝜎2|𝛼, 𝛽) 

∝ (𝜎2)(−
𝑛
2
)𝑒

−
(∑ 𝑥𝑖−𝜇𝑛

𝑖=1 )
2

2𝜎2 (𝜎2)−𝛼−1𝑒
−𝛽
𝜎2   

= (𝜎2)−(𝛼+ 
𝑛
2
)𝑒

−(𝛽+
(∑ 𝑥𝑖−𝜇𝑛

𝑖=1 )
2

2𝜎2 )

 
 

which is the form of an inverse-gamma with parameters (𝛼 +
𝑛

2
) and (𝛽 +

1

2
(∑ 𝑥𝑖 − 𝜇𝑛

𝑖=1 )2). 

     For the inverse-Wishart:  

𝑝(𝑋|𝜇, 𝜎) ∝ |Σ|−
𝑛
2𝑒−

∑(𝑋−𝜇)′Σ−1(𝑋−𝜇)
2  

∝ |Σ|−
𝑛
2𝑒

−𝑡𝑟(
𝑆𝜇Σ−1

2
)
  

𝑝(Σ|𝜈0, 𝑆0
−1) ∝ |Σ|

(𝜈0+𝑝+1)
2 𝑒−

𝑡𝑟(𝑆0Σ−1)
2  

𝑝(Σ|𝑋, 𝜇) ∝ 𝑝(Σ|𝜈0, 𝑆0
−1)𝑝(𝑋|𝜇, 𝜎) 

∝ |Σ|−
𝑛
2𝑒

−𝑡𝑟(
𝑆𝜇Σ−1

2
)
|Σ|

(𝜈0+𝑝+1)
2 𝑒−

𝑡𝑟(𝑆0Σ−1)
2  
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∝ |Σ|
−𝜈0+𝑛+𝑝+1

2 𝑒−
𝑡𝑟(𝑆0+𝑆𝜇)Σ−1

2   

Which is the form of an inverse-Wishart with parameters (𝜈0 + 𝑛) and (𝑆0 + 𝑆𝜇)
−1

 

c.) Discount factors 

Representation as loss of information between time steps:    

𝑅𝑡 = 𝑃𝑡 + 𝑊𝑡, 

𝑊𝑡 =
1 − 𝛿

𝛿
𝑃𝑡  

𝑃𝑡 = 𝐺𝑡𝐶𝑡−1𝐺𝑡
′ = 𝑉(𝐺𝑡𝜃𝑡−1|𝐷𝑡−1) 

 Sampling discount factors from a discrete probability distribution with 

probabilities equal to: 

𝑝(𝛿𝜇,𝑖, 𝛿𝛽,𝑖|𝜃1:𝑇 , 𝐶1:𝑇, 𝐺1:𝑇) =
∏ 𝑁 (𝜃𝑡|𝐺𝑡,𝑊𝑡(𝛿𝜇,𝑖, 𝛿𝛽,𝑖))

𝑇
𝑡=1

∑ ∏ 𝑁 (𝜃𝑡|𝐺𝑡,𝑊𝑡(𝛿𝜇,𝑖, 𝛿𝛽,𝑖))
𝑇
𝑡=1

𝑘
𝑖=1
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