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2Background

Why Phytoplankton?

What are phytoplankton?
• Microscopic marine algae

Why study phytoplankton?
• Production of 49-60 Gt C yr-1 (Carr et al. 2006)

• Drive global biogeochemical cycling (e.g. carbon; Falkowski 1994)

• Form the basis of production in marine food webs 
(Steinberg and Landry 2017)



3Background

Why is phytoplankton size important?

Phytoplankton size affects:

• Metabolic rate (López-Urrutia et al. 2011)

• Algae bloom formation (Irigoien et al. 2005)

• Food chain length (Sprules and Munawar 1986)

Phytoplankton size affected by:

• Cell size scales inversely with temperature (Atkinson et al. 2003)

• Cell size directly imposes a physical constraint on the potential rate of 
nutrient supply (e.g. Mei et al. 2009)
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Could ecosystem changes be changing cell size locally?

(Fulweiler et al. 2015)

In Narragansett Bay, Rhode Island, USA:
• Temperature has shown an increase of 1.4-1.6°C by 

a linear regression of mean annual levels (Fulweiler
et al. 2015)

• Nitrogen pollution in wastewater was required by RI 
Department of Environmental Management  to be 
cut 50% from 2005 to 2012 (RI DEM 2005)

http://www.dem.ri.gov/programs/emergencyresponse/bart/stations.php



Use Bayesian Dynamic Linear Models to:

1. Characterize long-term changes in Narragansett Bay 
(2003-2019):
• Temperature

• DIN (Dissolved inorganic nitrogen)

• Size Fractionated Chlorophyll 

(< 20µm,  >20µm, proxy for phytoplankton biomass)

2. Impute missing data

3. Test the influence of DIN on phytoplankton size structure 
through dynamic linear regression
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Research Objective
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• Narragansett Bay Long-term Plankton Time Series
• Source: https://web.uri.edu/gso/research/plankton/

• Time-period: 
• April 29, 2003- September 17, 2019
• Weekly resolution

• Variables:
• water temperature (°C)
• NH4

• NO3+NO2 (µm)
• Chlorophyll a < 20 µm (µg L-1)
• Chlorophyll a > 20 µm (µg L-1)

• Missingness:
• MCAR
• Missingness lengths 1-48 observations

7Methods

Data Description

https://web.uri.edu/gso/research/plankton/
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Dynamic Linear Models
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Dynamic Linear Models

Variable Definition

𝑌𝑡 Datum/Data

𝐹𝑡 Observational matrix

𝐺𝑡 Evolutional Matrix

𝜃𝑡 Unobserved state

𝑉𝑡 Observational variance/covariance

𝑊𝑡 Evolutional variance/covariance

𝜽0~𝑁 𝒎0, 𝑪0
𝑽~𝐼𝐺(𝑎𝑣, 𝑏𝑣 )
𝑾~𝐼𝑊(𝑎𝑤, 𝑏𝑤)

Priors

𝑌𝑡 = 𝑭𝑡𝜽𝑡 + 𝑣𝑡, 𝑣𝑡~𝑁 0, 𝑽
𝜽𝑡 = 𝑮𝑡𝜽𝑡−1 + 𝑤𝑡, 𝑤𝑡~𝑁 0,𝑾

Observation equation
State equation



Why?

• Flexible structure

• Components are additive 
➢ long-term trend, season, regression 

components separately

• Any parameter and component can 
time vary
➢ Important when we are hypothesizing 

changing ecosystem function

• Interpolation via inference

• Quantify uncertainty in missingness 
and states
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Dynamic Linear Models

Variable Definition

𝑌𝑡 Datum/Data

𝐹𝑡 Observational matrix

𝐺𝑡 Evolutional Matrix

𝜃𝑡 Unobserved state

𝑉𝑡 Observational variance/covariance

𝑊𝑡 Evolutional variance/covariance

𝜽0~𝑁 𝒎0, 𝑪0
𝑽~𝐼𝐺(𝑎𝑣, 𝑏𝑣 )
𝑾~𝐼𝑊(𝑎𝑤, 𝑏𝑤)

Priors

𝑌𝑡 = 𝑭𝑡𝜽𝑡 + 𝑣𝑡, 𝑣𝑡~𝑁 0, 𝑽
𝜽𝑡 = 𝑮𝑡𝜽𝑡−1 + 𝑤𝑡, 𝑤𝑡~𝑁 0,𝑾

Observation equation
State equation
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Stage 1: Models, Environment

Stage Model Response Variable(s) 𝜽 Components V Specification W Specification

1

1 Temperature
Dynamic, Intercept (𝜇)

Static, IG prior Static, IW prior
Dynamic, Season (𝑆𝑖), i=1

2
log NH4 ,                

log NO3 + NO2

Dynamic, Intercept (𝜇)
Static, IW prior Static, IW prior

Dynamic, Season (𝑆𝑖), i=1,...,6

3
log Chl. <20,           

log Chl. >20

Dynamic, Intercept (𝜇)
Static, IW prior Static, IW prior

Dynamic, Season (𝑆𝑖), i=1,...,6



12Outline

Outline



Inference and Sampling:

• Non-conjugate (no closed form of posterior distribution)

• Markov Chain Monte Carlo (MCMC) Simulation of Posteriors

• Gibbs Sample each conditional posterior distribution
➢𝜃1:𝑇|𝑌1:𝑇 , 𝑉,𝑊 Kalman Filtering and Smoothing 
➢𝑉|𝑌1:𝑇 ,𝑊, 𝜃1:𝑇 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎 (𝜈0 + 𝑇, 𝑆0 + 𝑅𝑆𝑆𝑦)
➢𝑊|𝑌1:𝑇 , 𝑉, 𝜃1:𝑇 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (𝜈0 + 𝑇, 𝑆0 + 𝑅𝑆𝑆𝜃)

• Default burn-in: 500 iterations

• Default run length 10,000 iterations
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Stage 1: Models, Environment
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Decomposing seasonal and long-term trends
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Stage 1: Models, Environment

(w
ee
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)

Chl. a < 20 µm

• Less variable

• Seasonal peak in autumn

• Increase in mean levels

• Intensifying seasonality

Chl. a > 20 µm

• More variable

• Seasonal peak in spring

• Decrease  in mean levels

• Seasonal intensity 
inversely correlated with 
mean levels



16Stage 1

Temperature & Nitrogen Species
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Outline

Stage 2 Model: Multivariate Dynamic Linear 
Regression
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Stage 2 Model: Regression

Stage Model Response Variable(s) 𝜽 Components V Specification W Specification

2 4
log Chl. <20,           

log Chl. >20

Dynamic, Intercept (𝜇)

Static, IW prior Dynamic, Fixed Discount FactorDynamic, Regression on DIN

Static, Season (𝑆𝑖), i=1
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DIN as a regressor

NH4 NO3+NO2 

Log DIN

Log Chl. a <20 µm

Log Chl. a >20 µm

න𝑝 Φ 𝐷𝐼𝑁,∙ 𝑝 𝐷𝐼𝑁 𝑑𝐷𝐼𝑁 = 𝑝 Φ ∙

samplesample

MCMC

log𝐷𝐼𝑁 = log( exp(𝐹1:𝑇𝜃𝑁𝐻4,1:𝑇) + exp(𝐹1:𝑇𝜃𝑁𝑂3,2,1:𝑇))

𝜃𝑁𝐻4,1:𝑇|𝑌1:𝑇~න𝑃 𝜃𝑁𝐻4,1:𝑇 𝑌1:𝑇 ,∙ 𝑃 ∙ |𝑌1:𝑇 𝑑 ∙

𝜃𝑁𝑂3,2,1:𝑇|𝑌1:𝑇~න𝑃 𝜃𝑁𝑂3,2 1:𝑇 𝑌1:𝑇 ,∙ 𝑃 ∙ |𝑌1:𝑇 𝑑 ∙



Inference:

• Non-conjugate (no closed form of posterior distribution)

• Markov Chain Monte Carlo (MCMC) Simulation of Posteriors

• Fixed 𝛿 levels, run in parallel in separate models

• Sample each posterior distribution

➢𝐷𝐼𝑁1:𝑇| ∙ From Stage 1 Model

➢𝜃1:𝑇|𝑌1:𝑇 , 𝑉,𝑊𝑡 Kalman Filtering and Smoothing

➢𝑊𝑡 Discount Specification

➢𝑉|𝑌1:𝑇 ,𝑊𝑡 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (𝜈0 + 𝑇, 𝑆0 + 𝑅𝑆𝑆𝜃)

• Burn-in: 500 iterations

• Run length 10,000 iterations
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Stage 2 Model: Regression



Evolutional Covariance specification:

• Discount factor 𝛿𝑖, describes the loss of information between 
time-steps
• 𝛿𝑖 = 1 is equivalent to a static model (no evolutional change in the states)

• Commonly specified between 0.85 and 0.999

• Practical discounting constrains information loss to a linear 
rather than exponential rate during longer period missingness

𝑅𝑡 𝑘 =
𝐺𝑘𝐶𝑡𝐺

′𝑘

𝛿𝑘
𝑖𝑓 𝑘 > 1, 𝑅𝑡 = 𝐺𝑘−1𝐶𝑡+1𝐺

′ 𝑘−1
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Stage 2 Model: Dynamic Regression

𝑊𝑡 =
1 − 𝛿𝑖
𝛿𝑖

𝑃𝑖,𝑡 ,

𝑃𝑖,𝑡 = 𝐺𝑡𝐶𝑡−1𝐺𝑡
′

𝛿 = 0.8

𝛿 = 0.9

𝛿 = 0.999



• DIN significantly associated with Chl. a > 20

• Chl. a > 20 µm negatively associated with DIN, suggesting that 
DIN is shaped by the Chl. a > 20 µm community, but not <20 µm

• No long-term-prediction of decline by ambient DIN

23Stage 2

Chl. a > 20 µm
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Conclusions

Biotic Change

• Narragansett Bay has switched from being dominated by 
organisms >20 µm to those <20 µm

• Seasonal variation has amplified in phytoplankton <20 µm

• The seasonally significant associations between large 
phytoplankton and DIN suggest large phytoplankton drive 
bay dynamics during winter periods
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Conclusions

• The multi-stage DLM provides a convenient structure for multivariate time-series 
analysis

• Useful when :

• Modeling may have multiple goals such as describing long-term patterns and 
regression on these features

• Missing data or posterior parameters of time series may be useful in other 
models

• Advantage over a joint model due to simplicity, and computational savings during 
model development :

• Posteriors of model stages can be saved and sampled, and thereby do not need 
to be re-estimated if later stages need to be adjusted
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