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Background: troubles with missing 
data in time series
• Component of Masters thesis work in Statistics at 

University of Rhode Island:
• Investigating multistage DLM modeling structures in 

application to long-term environmental monitoring

• Long-term environmental monitoring data
• 17 years of weekly resolution data on biological, 

physical, and chemical data

• Temperature

• Nitrogen

• Chlorophyll (algal pigment)

• Applied research questions:
• How are have each of these features changed with 

policy decisions on nutrient pollution?

• How have they affected each other?

• What are long-term and seasonal patterns?

• How do biological and chemical components relate?



Background: troubles with missing 
data in time series
1. Major gaps in data that were a concern for making 

accurate inference on these patterns:
• Causes engine issues on monitoring boat 
• Gaps in funding $$$
• Anomalous weather events 
• Periods of extended missingness have capacity to 

impact inferences on the full data series

2. Heteroskedasticity in the series

• Intertwined: 
• Time-varying covariance structure impacts imputation
• Extended periods of missing data impact inference on 

covariance structure

Missingness Length Frequency

1 61

2 6

4 1

48 1



Objectives:

Compare model selection criteria 
in data with heteroskedasticity 

and extensive missingness

Compare performance of 
covariance specification during 

extended periods of missingness



Problem overview and applied context

DLM overview

Role of covariance specification on inference

Simulation and analysis overview

Results

Discussion



State Space modeling: the Dynamic Linear Model
Extensive literature and history:
• Kalman, R. E. 1960. “A New Approach to Linear Filtering and Prediction 

Problems.” Journal of Fluids Engineering, Transactions of the ASME 82 
(1): 35–45. https://doi.org/10.1115/1.3662552.

• West, Mike, and Jeff Harrison. 1997. Bayesian Forecasting and 
Dynamic Models. 2nd ed. Verlag New York: Springer. 
https://doi.org/10.1007/b98971.

• Why?

• Flexible structure

• Components are additive 

➢ long-term trend, season, regression 
components separately

• Any parameter and component can time 
vary

• Interpolation via inference

• Quantify uncertainty in missingness and 
states

Variable Definition

𝑌𝑡 Datum/Data

𝐹𝑡 Observational matrix

𝐺𝑡 Evolutional Matrix

𝜃𝑡 Unobserved state

𝑉𝑡 Observational variance/covariance

𝑊𝑡 Evolutional variance/covariance

𝜽0~𝑁 𝒎0, 𝑪0
𝑽~𝐼𝐺(𝑎𝑣, 𝑏𝑣 )
𝑾~𝐼𝑊(𝑎𝑤, 𝑏𝑤)

Priors

Observation equation
State equation

𝑌𝑡 = 𝑭𝑡𝜽𝑡 + 𝑣𝑡, 𝑣𝑡~𝑁 0, 𝑽
𝜽𝑡 = 𝑮𝑡𝜽𝑡−1 + 𝑤𝑡, 𝑤𝑡~𝑁 0,𝑾



Kalman Filtering and Smoothing

1. One-step -ahead predictive distribution of the latent state, 𝑓 𝜃𝑡 𝑦1:𝑡−1 =
𝑁(𝑎𝑡 , 𝑅𝑡), where:

𝑎𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝑚𝑡−1,
𝑅𝑡 = 𝑉𝑎𝑟( 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝐶𝑡−1𝐺𝑡

′ +𝑊𝑡

2. One-step -ahead predictive distribution of the observation, 𝑓 𝑌𝑡 𝑦1:𝑡−1 =
𝑁(𝑓𝑡 , 𝑄𝑡), where:

𝑓𝑡 = 𝐸 𝑌𝑡 𝑦1:𝑡−1 = 𝐹𝑡𝑎𝑡
𝑄𝑡 = 𝑉𝑎𝑟 𝑌𝑡 𝑦1:𝑡−1 = 𝐹𝑡𝑅𝑡𝐹𝑡

′ + 𝑉𝑡

3. The filtered distribution of the latent state, 𝑓 𝜃𝑡 𝑦1:𝑡 = 𝑁(𝑚𝑡 , 𝐶𝑡), where:
𝑚𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑡 = 𝑎𝑡 + 𝑅𝑡𝐹𝑡

′𝑄𝑡
−1𝑒𝑡 ,

𝐶𝑡 = 𝑉𝑎𝑟 𝜃𝑡 𝑦1:𝑡 = 𝑅𝑡 − 𝑅𝑡𝐹𝑡
′𝑄𝑡

′𝐹𝑡𝑅𝑡,
𝑒𝑡 = 𝑌𝑡 − 𝑓𝑡

4. The smoothed distribution of the latent state,  𝑓 𝜃𝑡 𝑦1:𝑇 = 𝑁(𝑠𝑡, 𝑆𝑡), where:
𝑠𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑇 = 𝑚𝑡 + 𝐶𝑡𝐺𝑡+1

′ 𝑅𝑡+1
′ 𝑠𝑡+1 − 𝑎𝑡+1 ,

𝑆𝑡 = 𝐶𝑡 − 𝐶𝑡𝐺𝑡+1
′ 𝑅𝑡+1

−1 𝑅𝑡+1 𝑅𝑡+1
−1 𝐺𝑡+1𝐶𝑡



Kalman Filtering and Smoothing with Missing Data

1. One-step -ahead predictive distribution of the latent state, 𝑓 𝜃𝑡 𝑦1:𝑡−1 =
𝑁(𝑎𝑡 , 𝑅𝑡), where:

𝑎𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝑚𝑡−1,
𝑅𝑡 = 𝑉𝑎𝑟( 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝐶𝑡−1𝐺𝑡

′ +𝑊𝑡

2. One-step -ahead predictive distribution of the observation, 𝑓 𝑌𝑡 𝑦1:𝑡−1 =
𝑁(𝑓𝑡 , 𝑄𝑡), where:

𝑓𝑡 = 𝐸 𝑌𝑡 𝑦1:𝑡−1 = 𝐹𝑡𝑎𝑡
𝑄𝑡 = 𝑉𝑎𝑟 𝑌𝑡 𝑦1:𝑡−1 = 𝐹𝑡𝑅𝑡𝐹𝑡

′ + 𝑉𝑡

3. The filtered distribution of the latent state, 𝑓 𝜃𝑡 𝑦1:𝑡 = 𝑁(𝑚𝑡 , 𝐶𝑡), where:
𝑚𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑡 = 𝑎𝑡 + 𝑅𝑡𝐹𝑡

′𝑄𝑡
−1𝑒𝑡 ,

𝐶𝑡 = 𝑉𝑎𝑟 𝜃𝑡 𝑦1:𝑡 = 𝑅𝑡 − 𝑅𝑡𝐹𝑡
′𝑄𝑡

′𝐹𝑡𝑅𝑡,
𝑒𝑡 = 𝑌𝑡 − 𝑓𝑡

4. The smoothed distribution of the latent state,  𝑓 𝜃𝑡 𝑦1:𝑇 = 𝑁(𝑠𝑡, 𝑆𝑡), where:
𝑠𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑇 = 𝑚𝑡 + 𝐶𝑡𝐺𝑡+1

′ 𝑅𝑡+1
′ 𝑠𝑡+1 − 𝑎𝑡+1 ,

𝑆𝑡 = 𝐶𝑡 − 𝐶𝑡𝐺𝑡+1
′ 𝑅𝑡+1

−1 𝑅𝑡+1 𝑅𝑡+1
−1 𝐺𝑡+1𝐶𝑡
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Specification of Evolutional Covariance and 
Inference

• Static covariance

• 𝑊0 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (𝜈0, 𝑆0 )

• 𝑊|𝑌1:𝑇 , 𝑉, 𝜃1:𝑇 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 −𝑊𝑖𝑠ℎ𝑎𝑟𝑡 (𝜈0 + 𝑇, 𝑆0 + 𝑅𝑆𝑆𝜃)

• Discounted covariance
𝑅𝑡 = 𝑉𝑎𝑟( 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝐶𝑡−1𝐺𝑡

′ +𝑊𝑡
𝑅𝑡 = 𝑃𝑡 +𝑊𝑡

𝑊𝑡 =
1−𝛿

𝛿
𝑃𝑡



Evolutional Covariance specification:

• One-step -ahead predictive distribution of the latent state, 
𝑓 𝜃𝑡 𝑦1:𝑡−1 = 𝑁(𝑎𝑡 , 𝑅𝑡), where:

𝑎𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝑚𝑡−1,
𝑅𝑡 = 𝑉𝑎𝑟( 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝐶𝑡−1𝐺𝑡

′ +𝑊𝑡

• Discount factor 𝛿𝑖, describes the loss of information 
between time-steps
• 𝛿𝑖 = 1 is equivalent to a static model (no evolutional 

change in the states)
• Commonly specified between 0.85 and 0.999

• Can be sampled or fixed and compared across models

• Major parameter reduction

• Accommodates evolution in covariance

𝑊𝑡 =
1 − 𝛿𝑖
𝛿𝑖

𝑃𝑖,𝑡 ,

𝑃𝑖,𝑡 = 𝐺𝑡𝐶𝑡−1𝐺𝑡
′

𝛿 = 0.8

𝛿 = 0.9

𝛿 = 0.999



Uncertainty and Covariance

• In a forecast, information is lost at a linear loss rate relative to Wt following recursive 
forecasting:

𝑚𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝑚𝑡−1,
𝐶𝑡 = 𝑉𝑎𝑟( 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝐶𝑡−1𝐺𝑡

′ +𝑊𝑡 , 𝑡 = 𝑗, … , 𝑘

• Smoothing (backward recursion) is not affected so in missingness periods:

data data no datano data

V
ar

ia
n

ce

Forecast/filter
Smoothed



• In a forecast, information is lost at an exponential loss rate relative to Wt following 
recursive forecasting:

𝑚𝑡 = 𝐸 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝑚𝑡−1,
𝐶𝑡 = 𝑉𝑎𝑟( 𝜃𝑡 𝑦1:𝑡−1 = 𝐺𝑡𝐶𝑡−1𝐺𝑡

′ +𝑊𝑡, 𝑡 = 𝑗, … , 𝑘

𝑊𝑡 =
1 − 𝛿𝑖
𝛿𝑖

𝑃𝑖,𝑡 ,

𝑃𝑖,𝑡 = 𝐺𝑡𝐶𝑡−1𝐺𝑡
′

𝐶𝑡 𝑘 =
𝐺𝑘𝐶𝑡𝐺

′𝑘

𝛿𝑘

• Smoothing (backward recursion) is not affected so in missingness periods:

data data no datano data

V
ar

ia
n

ce

Forecast/filter
Smoothed



Practical Evolutional Covariance specification:

• Practical discounting constrains information loss to a linear rather than exponential rate during longer period 
missingness

𝑅𝑡 𝑘 =
𝐺𝑘𝐶𝑡𝐺

′𝑘

𝛿𝑘
𝑖𝑓 𝑘 > 1, 𝑅𝑡 = 𝐺𝑘−1𝐶𝑡+1𝐺

′ 𝑘−1

• Harrison and West 1997

• In essence, fix Wt after forecast beyond 1 step

• Greatly constrains uncertainty where discount factors are low

in covariance data data no datano data

V
ar

ia
n

ce

data data no datano data

V
ar

ia
n

ce

Forecast/filter
Smoothed

Standard Forecast/filter
Practical Forecast/filter



Problem 
Overview

In long-term monitoring, challenged by data with:
1. Long periods of missingness

2. Non-stationarity on covariance (static covariance not appropriate)

• Kalman filtering and smoothing & discount factors are common tools to 
handle time series with missingness

• Discount common to handle covariance

• But evaluation of discounting in extended periods of missing data is lacking

Objective

• What is optimal criteria for selecting a discount factor?

• If simulate missing periods with given discount factor, which criteria 
best recovers discount factor?

• What is the optimal covariance specification in forecasting during 
extended data missingness?

• Compare criteria when missingness is introduced. What gives best 
inference to missing data/

• How does practical vs standard discounting impact model selection 
when you have extended periods of missingness
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Simulation:

• Goal: simulate data with similar 
properties to real data but with 
known parameter values

• Fit a DLM with dynamic intercept and 
regression to original data with two sets 
of discount factors 

• {0.999, 0.99}
• {0.99, 0.95}

• Calculate posterior mean of V and Wt

• Recursively draw latent states and 
observed values until the original data 
length is reached

𝑌𝑡 = 𝑭𝑡𝜽𝑡 + 𝑣𝑡 , 𝑣𝑡~𝑁 0,𝑽
𝜽𝑡 = 𝑮𝑡𝜽𝑡−1 + 𝑤𝑡 , 𝑤𝑡~𝑁 0,𝑾

• In a copy of each simulated series, 
randomly introduce missingness with 
frequency patterns identical to the 
original data set





Metric Version Calculation

DIC4 (Celeux et al. 2006)

WAIC (Watanabe 2010)

RMSE 1
𝑅𝑀𝑆𝐸𝑟,1 =

2

Σ𝑡=1
𝑛 𝑦𝑡− 𝑭𝑡−1𝜽𝑡−1,𝑖

2

𝑛

2

𝑅𝑀𝑆𝐸𝑡,2=

2

Σ𝑖=1
r 𝑦𝑡− 𝑭𝑡−1𝜽𝑡−1,𝑖

2

𝑟

RMSFE 1
𝑅𝑀𝑆𝐹𝐸𝑟,1 =

2

Σ𝑡=1
𝑛 𝑦𝑡− 𝑭𝑡−1𝜽𝑡−1,𝑖

2

𝑛

2
𝑅𝑀𝑆𝐹𝐸𝑡,2=

2

Σ𝑖=1
𝑟 𝑦𝑡− 𝑭𝑡−1𝜽𝑡−1,𝑖

2

𝑟

• 6 criteria emphasizing difference 
between:
• Within and out of sample 

accuracy:
• DIC4, WAIC vs. RMSE, RMSFE

• Posterior mean point estimate vs 
integration over predictive 
density
• RMSE1 vs RMSE2

• RMSFE1 vs. RMSFE2

• RMSE calculated in missing data 
periods

• RMSFE calculated for each time step
• DIC4 and WAIC calculated in periods of 

observed data

To inform model selection, several 
indices were considered:



Evaluation:

• Fit each series with 
practical/standard discounting
• MCMC 10000
• Burn-in 1000

• Calculate: 
• DIC4

• WAIC
• RMSFE1

• RMSFE2

• RMSE1

• RMSE2

• For RMSFE and RMSE metrics, 
calculate all pairwise posterior 
probabilities:
𝑃(𝑀𝑒𝑡𝑟𝑖𝑐𝛿𝐴 < 𝑀𝑒𝑡𝑟𝑖𝑐𝛿−𝐴)

• Compare performance metrics and 
optimal discount sets for each data 
set and discounting method
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High Discount Data Generation Model (0.99, 0.999)

Practical

Standard



Low Discount Data Generation Model (0.95, 0.99)

Practical

Standard



Criteria 
Evaluation

• Under data simulated with a pair of high 
discount factors (0.999, 0.99),  all metrics 
selected within 0.009 of the parameters 
for data generation

• Under all simulations, RMSFE showed the 
highest power to discriminate the proper 
discounting level

• The RMSE suggest that practical 
discounting will optimize performance in 
long-periods of missingness. 

• DIC supports that practical discounting 
improves the model fit within sample.

• Although RMSE was a biased metric for 
model selection, particularly during 
prolonged periods of missingness, it still 
had utility in evaluating the performance 
of practical discounting in data with long 
period missingness. 

• While RMSFE may be the optimal method 
for discount factor selection, it does not 
account for performance during long-
period missingness as our metric of RMSE 
does. Therefore, results of RMSE in 
comparable models with practical and 
standard discounting provide an 
evaluation for this imputation method. 

StandardLow Standard High

Data Generation 
Model

Method RMSE

0.99, 0.999 Standard 0.95

Practical 0.95

0.95, 0.99 Standard 0.98

Practical 0.90
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Take-aways

Relatively consistent and accurate discount factor recovery 
under conditions of low variability

In conditions of low variability, practical vs. standard discounting:

→ Have minor impact on model fits

→ Does not dramatically impact performance metrics 

Under high variability systems selection criteria matters

RMSFE1 shows highest power among error criteria tested

WAIC, DIC4 are highly biased under standard discounting

RMSFE1,2 and RMSE show similar performance and power under both 
practical and standard discounting
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